SEMANTIC MAP GENERATION VIA CAMERA AND LIDAR FUSION FOR REAL-TIME OBJECT DETECTION WITH DEEP LEARNING - Dalam bentuk buku karya ilmiah

LUTHFI RIZQI MUBARAK

Informasi Dasar

207 kali
24.05.415
006.31
Karya Ilmiah - Thesis (S2) - Reference

This research focuses on the development of a real-time semantic mapping system that integrates object detection with Simultaneous Localization and Mapping (SLAM) for indoor robotic navigation. The system fuses data from a camera and LiDAR, enabling the generation of maps containing both geometric and semantic information. By employing the YOLOv3 deep learning model for object detection and the Gmapping algorithm for SLAM, the system accurately identifies and localizes objects such as doors, bicycles, and trash cans within the environment. The produced semantic map enhances the robot’s ability to navigate and interact effectively with its surroundings. The system is designed to ensure real-time performance without compromising computational efficiency. Experimental results demonstrate the robustness of the system in fusing object detection with SLAM, leading to a comprehensive and detailed representation of the environment. Future work will focus on the incorporation of scene classification techniques to prov

Subjek

Robot vision - computer vision
 

Katalog

SEMANTIC MAP GENERATION VIA CAMERA AND LIDAR FUSION FOR REAL-TIME OBJECT DETECTION WITH DEEP LEARNING - Dalam bentuk buku karya ilmiah
 
xiv, 48p.: il,; pdf file
English

Sirkulasi

Rp. 0
Rp. 0
Tidak

Pengarang

LUTHFI RIZQI MUBARAK
Perorangan
Angga Rusdinar, Suryo Adhi Wibowo
 

Penerbit

Universitas Telkom, S2 Teknik Elektro
Bandung
2024

Koleksi

Kompetensi

  • TEI6G3 - PEMBELAJARAN MESIN LANJUT
  • ELH613 - ROBOT NAVIGASI OTONOM BERBASIS SENSOR
  • TEI7A3 - ROBOTIKA LANJUT
  • TEI6A3 - SISTEM CERDAS
  • ETH513 - SISTEM EMBEDDED

Download / Flippingbook

 

Ulasan

Belum ada ulasan yang diberikan
anda harus sign-in untuk memberikan ulasan ke katalog ini