ABSTRAKSI: Permasalahan wavelet thresholding pada image denoising adalah
 bagaimana menentukan nilai threshold yang tepat. Penggunaan metoda seperti
 Normalshrink untuk mencari nilai threshold bisa menyelesaikan permasalahan.
 Namun metoda Normalshrink mengasumsikan bahwa wavelet coeffient bersifat
 independent. Penggunaan metoda Bivariate Shrinkage Dengan Local Variance
 Estimation tetap mempertahankan sifat dependent dari wavelet coefficient
 sehingga bisa meningkatkan performansi image denoising. Performansi metoda
 ini dipengaruhi oleh ukuran windowsize pada saat perhitungan variance dari citra
 ternoise.
 Dalam Tugas Akhir ini telah dianalisis dan diimplementasikan image
 denoising menggunakan metode Bivariate Shrinkage Dengan Local Variance
 Estimation. Pengujian dilakukan terhadap berbagai ukuran windowsize sehingga
 diketahui pengaruhnya terhadap PSNR hasil denoising dan waktu komputasi
 proses denoising. Noise yang digunakan dalam pengujian adalah additive
 gaussian noise, additive laplacian noise, dan impulsive noise yang dibangkitkan
 melalui suatu noise generator.
 Dari hasil percobaan didapatkan bahwa metoda Bivariate Shrinkage
 Dengan Local Variance Estimation mendapatkan PSNR hasil denoising yang
 lebih baik sekitar 0.01~0.5 dB terhadap Bivariate Shrinkage dan 0.05~1.5 dB
 terhadap Normalshrink. Waktu komputasi proses denoising metoda ini
 dipengaruhi oleh ukuran windowsize, semakin besar windowsize maka semakin
 tinggi waktu komputasi proses denoising.Kata Kunci : wavelet thresholding, image denoising, bivariate shrinkage, local variance estimation, windowsize.ABSTRACT: The main problem in image denoising using wavelet thresholding is how
 to obtain the effective threshold value. The Normalshrink usage to obtain this
 value can be accomplish the problem. But Normalshrink assumes that wavelet
 coefficients are independent each other. Bivariate Shrinkage With Local Variance
 Estimation usage keeps the dependent between wavelet coefficient so can improve
 the performance of image denoising. The performance of this method is
 influenced by windowsize in noised image’s marginal variance measurement
 In this Final Project, it has been analysed and implemented the used of
 Bivariate Shrinkage With Local Variance Estimation method for image denoising.
 Testing phase is toward to varying windowsize so the influences in denoising
 PSNR’s result and computational time will be known. The noise which is used in
 testing phase are additive gaussian noise, additive laplacian noise and impulsive
 noise which is generated by noise generator.
 From the experiment result, Bivariate Shrinkage With Local Variance
 Estimation method have better PSNR’s denoising result about 0.01~0.5 dB toward
 to Bivariate Shrinkage and 0.05~1.5 dB toward to Normalshrink. Denoising
 computational time of this method is influenced by windowsize, bigger
 windowsize needs bigger denoising computational time.Keyword: wavelet thresholding, image denoising, bivariate shrinkage, local variance estimation, windowsize.