Klasifikasi Lalu Lintas Darknet Menggunakan Federated Semi-Supervised Learning - Dalam bentuk pengganti sidang - Rancangan Karya Akhir

HERYOKA KURNIAWAN

Informasi Dasar

16 kali
25.04.7084
000
Karya Ilmiah - Skripsi (S1) - Reference

Darknet traffic classification is an essential cyberse curity issue that will be addressed in this study due to anonymity, class imbalance, and unavailability of labeled data in Darknet datasets. The objective of paper is a Federated Semi-Supervised Learning model to address these issues, with federated learning’s privacy features with semi-supervised techniques for efficient use of both labeled and unlabeled data. The two experiments using the CIC-Darknet2020 dataset as the approach for this study. The first experiment employed the FedAvg aggregation strategy with 10 clients for 10 rounds and achieved a global accuracy of 93.55%. The following experiment compared FedAvg, FedMedian, FedTrimmedMean, and FedKrum using 5 clients for 5 rounds, among which FedMedian achieved the highest accuracy of 88.88%. The study succeeded in taking advantage of pseudo-labeling for enhanced performance promotion, data privacy preservation, and could potentially find everyday appli cation in cyber security, yet one domain which requires future improvement is class imbalance.

Subjek

CYBERSECURITY
 

Katalog

Klasifikasi Lalu Lintas Darknet Menggunakan Federated Semi-Supervised Learning - Dalam bentuk pengganti sidang - Rancangan Karya Akhir
 
 
 

Sirkulasi

Rp. 0
Rp. 0
Tidak

Pengarang

HERYOKA KURNIAWAN
Perorangan
Parman Sukarno, Aulia Arif Wardana
 

Penerbit

Universitas Telkom, S1 Informatika
Bandung
2025

Koleksi

Kompetensi

  • CAK4FAA4 - Tugas Akhir

Download / Flippingbook

 

Ulasan

Belum ada ulasan yang diberikan
anda harus sign-in untuk memberikan ulasan ke katalog ini