Hybrid LSTM-FCNN Framework for Multimodal Sentiment Classification on Mental Health-Related Social Media Posts on X - Dalam bentuk pengganti sidang - Artikel Jurnal

DEFRYAN APRISANDANI

Informasi Dasar

12 kali
25.04.7008
000
Karya Ilmiah - Skripsi (S1) - Reference

This study proposes a Multimodal Sentiment Analysis (MSA) framework for detecting mental health-related sentiment on social media platform X. A total of 40,000 tweet-image pairs were collected from platform X and annotated through a majority voting system. To construct the FastText similarity corpus, 103,512 text data from digital Cable News Network (CNN) 63,512 and X 40,000 were merged to enhance semantic learning. The framework integrates multiple textual feature extraction techniques—RoBERTa, TF-IDF, and FastText—with visual features extracted using VGG-19. Classification is conducted using Long Short-Term Memory (LSTM) for text, Fully Connected Neural Network (FCNN) for images, and their fusion within a multimodal architecture. The best-performing configuration, a multimodal LSTM + FCNN model enhanced with an attention mechanism, achieved an accuracy of 78.56%, marking a 28.01% increase over the image-only baseline. These findings underscore the importance of combining contextual language modeling with complementary visual features through adaptive fusion. The proposed MSA framework demonstrates potential in recognizing complex emotional signals and contributes to the advancement of AI-driven early detection tools for psychological distress on social media.

Keywords—Sentiment Analysis, RoBERTa, TF-IDF, Fasttext, VGG-19, LSTM, FCNN.

Subjek

DATA SCIENCE
 

Katalog

Hybrid LSTM-FCNN Framework for Multimodal Sentiment Classification on Mental Health-Related Social Media Posts on X - Dalam bentuk pengganti sidang - Artikel Jurnal
 
.: il,; pdf file
English

Sirkulasi

Rp. 0
Rp. 0
Tidak

Pengarang

DEFRYAN APRISANDANI
Perorangan
Erwin Budi Setiawan
 

Penerbit

Universitas Telkom, S1 Informatika
Bandung
2025

Koleksi

Kompetensi

  • CAK4FAA4 - Tugas Akhir

Download / Flippingbook

 

Ulasan

Belum ada ulasan yang diberikan
anda harus sign-in untuk memberikan ulasan ke katalog ini