Analisis Performa Teknik Prompting pada ChatGPT dalam Menyelesaikan Soal Kalkulus Menggunakan Logistic Mixed Effects Model - Dalam bentuk pengganti sidang - Artikel Jurnal

CAKRA BUDIMAN PUTRA

Informasi Dasar

66 kali
25.04.5916
000
Karya Ilmiah - Skripsi (S1) - Reference

Abstract— The utilization of Large Language Models (LLMs) like ChatGPT in calculus education offers significant potential, yet its effectiveness is highly dependent on the prompting technique employed. This study aims to systematically evaluate and compare the performance of three prompting techniques Zero-Shot, Few-Shot, and Chain-ofThought (CoT) in solving calculus problems (integrals, derivatives, and limits) using the GPT-4o mini model. A total of 270 responses from 90 problems of varying difficulty levels were manually evaluated by experts based on four criteria: clarity, correctness, strategy, and representation. Data analysis was performed using a Logistic Mixed Effects Model (LMM) to test the influence of each variable. The results consistently demonstrate that the Chain-of-Thought (CoT) technique is significantly superior, particularly in enhancing the clarity and strategic quality of the solutions. The analysis also reveals that problem type is a critical factor, with limit problems posing the greatest challenge to the model. This study concludes that the choice of prompting technique is crucial for maximizing the potential of LLMs in education and recommends CoT as the most effective strategy for generating solutions that are not only accurate but also possess high pedagogical value.

Subjek

TUGAS AKHIR
 

Katalog

Analisis Performa Teknik Prompting pada ChatGPT dalam Menyelesaikan Soal Kalkulus Menggunakan Logistic Mixed Effects Model - Dalam bentuk pengganti sidang - Artikel Jurnal
 
ii, 6p.: il,; pdf file
English

Sirkulasi

Rp. 0
Rp. 0
Tidak

Pengarang

CAKRA BUDIMAN PUTRA
Perorangan
Kemas Muslim Lhaksmana, Aditya Firman Ihsan
 

Penerbit

Universitas Telkom, S1 Informatika
Bandung
2025

Koleksi

Kompetensi

  • CII2M3 - PENGANTAR KECERDASAN BUATAN
  • CAK4TBB3 - Sistem Pemberi Rekomendasi

Download / Flippingbook

 

Ulasan

Belum ada ulasan yang diberikan
anda harus sign-in untuk memberikan ulasan ke katalog ini