Peningkatan volume lalu lintas menimbulkan tantangan dalam pengelolaan lalu lintas yang efektif. Sistem konvensional sering tidak menyediakan informasi mengenai kondisi kepadatan lalu lintas yang ada. Penelitian ini mengembangkan sistem klasifikasi kepadatan lalu lintas berbasis deep learning menggunakan model hybrid YOLOX untuk deteksi kendaraan dan SegFormer untuk segmentasi area jalan. Kedua model diintegrasikan menggunakan pendekatan Fusion Layer, yang menggabungkan hasil inferensi untuk menghitung rasio area jalan yang tertutupi kendaraan. Sistem ini diimplementasikan dalam bentuk aplikasi website yang menerima input langsung dari webcam, serta menampilkan informasi kepadatan secara visual dan numerik. Hasil evaluasi menunjukkan bahwa kombinasi model menghasilkan akurasi klasifikasi sebesar 80%, lebih tinggi dibandingkan penggunaan model secara terpisah. Penelitian ini berhasil mengembangkan sistem klasifikasi kepadatan lalu lintas dan memberikan kemudahan dalam mengakses informasi baik secara visual maupun numerik terkait tingkat kepadatan lalu lintas berdasarkan input langsung dari webcam.