FastText-Enhanced Hybrid Deep Learning with Genetic Algorithm for Sentiment Analysis of Indonesia’s 2024 Regional Election on X - Dalam bentuk buku karya ilmiah

HEMIA LISA SIMBOLON

Informasi Dasar

62 kali
25.04.426
000
Karya Ilmiah - Skripsi (S1) - Reference

The 2024 Regional Elections in Indonesia have ignited vigorous public discourse, rendering sentiment analysis an essential instrument for comprehending voter behavior, candidate popularity, and campaign plans. This research utilizes a novel methodology, incorporating a hybrid model of Convolutional Neural Networks (CNN) and Bidirectional Gated Recurrent Units (BiGRU), enhanced by Genetic Algorithms, to assess public mood. This research also investigates the use of FastText features to increase sentiment classification accuracy. The dataset includes 60,000 Indonesian tweets collected using keywords linked to the 2024 Regional Election. In this research, CNN is utilized to extract spatial features, BiGRU to capture temporal dynamics, and FastText and Term Frequency-Inverse Document Frequency (TF-IDF) to represent features, all of which are GA optimized. The experimental results demonstrate that GA optimization has a considerable effect on model performance. The CNN-BiGRU + GA models had the highest accuracy of

Subjek

DATA SCIENCE
 

Katalog

FastText-Enhanced Hybrid Deep Learning with Genetic Algorithm for Sentiment Analysis of Indonesia’s 2024 Regional Election on X - Dalam bentuk buku karya ilmiah
 
v, 12p.: il,; pdf file
 

Sirkulasi

Rp. 0
Rp. 0
Tidak

Pengarang

HEMIA LISA SIMBOLON
Perorangan
Erwin Budi Setiawan
 

Penerbit

Universitas Telkom, S1 Informatika
Bandung
2025

Koleksi

Kompetensi

 

Download / Flippingbook

 

Ulasan

Belum ada ulasan yang diberikan
anda harus sign-in untuk memberikan ulasan ke katalog ini