Evaluation of Modified Inception-v3 Model in Tomato Fruit Ripeness Classification on Image - Dalam bentuk pengganti sidang - Artikel Jurnal

MUHAMMAD FAIQ JABBAR

Informasi Dasar

72 kali
25.04.364
000
Karya Ilmiah - Skripsi (S1) - Reference

This study introduces an enhanced deep learning approach for accurately classifying tomato ripeness levels using a modified Inception-V3 model, with applications in large-scale agricultural environments. Leveraging a dataset of 7,224 RGB images of tomatoes in varying ripeness stages, the modified model achieved a validation accuracy of 98.42%, with precision, recall, and F1-score values exceeding 98%. These results outperform the base Inception-V3 model and other commonly used architectures such as ResNet and VGG, showcasing the model's superior classification accuracy and computational efficiency. Key modifications include adjustments to filter sizes and the configuration of inception blocks, which significantly reduce the parameter count, thereby optimizing computational resources and enhancing feature extraction for multi-scale image analysis. The model was tested under three lighting conditions, achieving over 97% accuracy across all categories. Confusion matrices validate its effectiveness, highlighting

Subjek

DEEP LEARNING
 

Katalog

Evaluation of Modified Inception-v3 Model in Tomato Fruit Ripeness Classification on Image - Dalam bentuk pengganti sidang - Artikel Jurnal
 
15p.: il,; pdf file
 

Sirkulasi

Rp. 0
Rp. 0
Tidak

Pengarang

MUHAMMAD FAIQ JABBAR
Perorangan
Febryanti Sthevanie, Kurniawan Nur Ramadhani
 

Penerbit

Universitas Telkom, S1 Informatika
Bandung
2025

Koleksi

Kompetensi

 

Download / Flippingbook

 

Ulasan

Belum ada ulasan yang diberikan
anda harus sign-in untuk memberikan ulasan ke katalog ini