Bringing Machine Learning to Software-Defined Networks

Zehua Guo

Informasi Dasar

59 kali
23.21.1829
006.31
Buku - Elektronik (E-Book)
Tel-U Gedung Manterawu Lantai 5 : Rak 4
Tel-U Purwokerto : Rak 3

Emerging machine learning techniques bring new opportunities to flexible network control and management. This book focuses on using state-of-the-art machine learning-based approaches to improve the performance of Software-Defined Networking (SDN). It will apply several innovative machine learning methods (e.g., Deep Reinforcement Learning, Multi-Agent Reinforcement Learning, and Graph Neural Network) to traffic engineering and controller load balancing in software-defined wide area networks, as well as flow scheduling, coflow scheduling, and flow migration for network function virtualization in software-defined data center networks. It helps readers reflect on several practical problems of deploying SDN and learn how to solve the problems by taking advantage of existing machine learning techniques. The book elaborates on the formulation of each problem, explains design details for each scheme, and provides solutions by running mathematical optimization processes, conducting simulated experiments, and analyzing the experimental results.

Subjek

Machine Learning
 

Katalog

Bringing Machine Learning to Software-Defined Networks
978-981-19-4874-9
68p.: pdf file.; 3,7 MB
English

Sirkulasi

Rp. 0
Rp. 0
Tidak

Pengarang

Zehua Guo
Perorangan
 
 

Penerbit

Springer Cham
New York
2022

Koleksi

Kompetensi

 

Download / Flippingbook

 

Ulasan

Belum ada ulasan yang diberikan
anda harus sign-in untuk memberikan ulasan ke katalog ini