Indonesian News Extractive Text Summarization Using Latent Semantic Analysis

Rizka Ainur Rofiq, Suyanto

Informasi Dasar

104 kali
23.09.006
006.312
Artikel - Restricted Use
Tel-U Gedung Manterawu Lantai 5 : Rak 4
Tel-U Purwokerto : Rak 3

News text is a text that contains important information that is happening to be disseminated to the public. In the news, the more information, the more text is displayed. Of course, it takes a lot of time to read the entire text of the news. Automatic text summarization is needed to help readers understand the content of the news text quickly. In this study, the application of the latent semantic analysis method with the GongLiu, Steinberger Jezek, and Cross techniques will be applied to automatic text summarization. The test data will be tested by using local news about politics. By comparing the rate the three methods previously mentioned, Gongliu is considered the best amongst the three methods since it has the highest Rogue value and the fastest processing time. Keywords: text summarization, semantic analysis, comparing rate

Subjek

Text mining
DATA MINING,

Katalog

Indonesian News Extractive Text Summarization Using Latent Semantic Analysis
 
5p.: pdf file.; 276 KB
English

Sirkulasi

Rp. 0
Rp. 0
Tidak

Pengarang

Rizka Ainur Rofiq, Suyanto
Perorangan
 
 

Penerbit

IC2SE
Bandung
2021

Koleksi

Kompetensi

 

Download / Flippingbook

 

Ulasan

Belum ada ulasan yang diberikan
anda harus sign-in untuk memberikan ulasan ke katalog ini