Data Science Crash Course: Drinking Water Potability Classification and Prediction Using Machine Learning and Deep Learning with Python

Vivian Siahaan, Rismon Hasiholan Sianipar

Informasi Dasar

74 kali
22.21.1427
006.31
Buku - Elektronik (E-Book)
Tel-U Gedung Manterawu Lantai 5 : Rak 4
Tel-U Purwokerto : Rak 3

Access to safe drinking water is essential to health, a basic human right, and a component of effective policy for health protection. This is important as a health and development issue at a national, regional, and local level. In some regions, it has been shown that investments in water supply and sanitation can yield a net economic benefit, since the reductions in adverse health effects and health care costs outweigh the costs of undertaking the interventions. The drinkingwaterpotability.csv file contains water quality metrics for 3276 different water bodies. The columns in the file are as follows: ph, Hardness, Solids, Chloramines, Sulfate, Conductivity, Organic_carbon, Trihalomethanes, Turbidity, and Potability.

Contaminated water and poor sanitation are linked to the transmission of diseases such as cholera, diarrhea, dysentery, hepatitis A, typhoid, and polio. Absent, inadequate, or inappropriately managed water and sanitation services expose individuals to preventable health risks. This is particularly the case in health care facilities where both patients and staff are placed at additional risk of infection and disease when water, sanitation, and hygiene services are lacking.

The machine learning models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, Adaboost, LGBM classifier, Gradient Boosting, XGB classifier, MLP classifier, and CNN 1D. Finally, you will plot boundary decision, ROC, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performance of the model, scalability of the model, training loss, and training accuracy.

Subjek

Machine Learning
PYTHON,

Katalog

Data Science Crash Course: Drinking Water Potability Classification and Prediction Using Machine Learning and Deep Learning with Python
978-981-19-5579-2
211p.: pdf file.; 41 MB
English

Sirkulasi

Rp. 0
Rp. 0
Tidak

Pengarang

Vivian Siahaan, Rismon Hasiholan Sianipar
Perorangan
 
 

Penerbit

Balige Publishing
Medan
2022

Koleksi

Kompetensi

 

Download / Flippingbook

 

Ulasan

Belum ada ulasan yang diberikan
anda harus sign-in untuk memberikan ulasan ke katalog ini