Distributed Machine Learning with Python: Accelerating Model Training and Serving with Distributed Systems

Guanhua Wang

Informasi Dasar

515 kali
22.21.828
006.31
Buku - Elektronik (E-Book)
Tel-U Gedung Manterawu Lantai 5 : Rak 4
Tel-U Purwokerto : Rak 3

Reducing time cost in machine learning leads to a shorter waiting time for model training and a faster model updating cycle. Distributed machine learning enables machine learning practitioners to shorten model training and inference time by orders of magnitude. With the help of this practical guide, you'll be able to put your Python development knowledge to work to get up and running with the implementation of distributed machine learning, including multi-node machine learning systems, in no time. You'll begin by exploring how distributed systems work in the machine learning area and how distributed machine learning is applied to state-of-the-art deep learning models. As you advance, you'll see how to use distributed systems to enhance machine learning model training and serving speed. You'll also get to grips with applying data parallel and model parallel approaches before optimizing the in-parallel model training and serving pipeline in local clusters or cloud environments. By the end of this book, you'll have gained the knowledge and skills needed to build and deploy an efficient data processing pipeline for machine learning model training and inference in a distributed manner.

What you will learn Deploy distributed model training and serving pipelines Get to grips with the advanced features in TensorFlow and PyTorch Mitigate system bottlenecks during in-parallel model training and serving Discover the latest techniques on top of classical parallelism paradigm Explore advanced features in Megatron-LM and Mesh-TensorFlow Use state-of-the-art hardware such as NVLink, NVSwitch, and GPUs Who this book is for This book is for data scientists, machine learning engineers, and ML practitioners in both academia and industry. A fundamental understanding of machine learning concepts and working knowledge of Python programming is assumed. Prior experience implementing ML/DL models with TensorFlow or PyTorch will be beneficial. You'll find this book useful if you are interested in using distributed systems to boost machine learning model training and serving speed.

Table of Contents Splitting Input Data Parameter Server and All-Reduce Building a Data Parallel Training and Serving Pipeline Bottlenecks and Solutions Splitting the Model Pipeline Input and Layer Split Implementing Model Parallel Training and Serving Workflows Achieving Higher Throughput and Lower Latency A Hybrid of Data and Model Parallelism Federated Learning and Edge Devices Elastic Model Training and Serving Advanced Techniques for Further Speed-Ups

Subjek

Machine Learning
PYTHON,

Katalog

Distributed Machine Learning with Python: Accelerating Model Training and Serving with Distributed Systems
978-1-80181-569-7
284p.: pdf file.; 5 MB
English

Sirkulasi

Rp. 0
Rp. 0
Tidak

Pengarang

Guanhua Wang
Perorangan
 
 

Penerbit

Packt Publishing
New York
2022

Koleksi

Kompetensi

  • TKI4F3 - PEMBELAJARAN MESIN
  • CII3C3 - PEMBELAJARAN MESIN
  • CPI3C3 - PEMBELAJARAN MESIN
  • CSI-2I3 - PEMBELAJARAN MESIN
  • CSI2I3 - PEMBELAJARAN MESIN
  • TEI4N3 - PEMBELAJARAN MESIN DAN APLIKASI
  • CII3L3 - PEMBELAJARAN MESIN LANJUT
  • TEI6G3 - PEMBELAJARAN MESIN LANJUT
  • CPI3L3 - PEMBELAJARAN MESIN LANJUT
  • CSI4C3 - PEMBELAJARAN MESIN OTOMATIS
  • CII7F3 - PEMBELAJARAN MESIN UNTUK SISTEM REKOMENDASI
  • CII7F3 - PEMBELAJARAN MESIN UNTUK SISTEM REKOMENDASI
  • ISI3E3 - DASAR SISTEM OPERASI
  • TKI3B3 - SISTEM OPERASI
  • CII2H3 - SISTEM OPERASI
  • CII2H3 - SISTEM OPERASI
  • VKI1B3 - SISTEM OPERASI
  • VEI1I3 - SISTEM OPERASI
  • CII2H3 - SISTEM OPERASI
  • CPI2H3 - SISTEM OPERASI
  • CII-2H3 - SISTEM OPERASI
  • CII2H3 - SISTEM OPERASI
  • CTI4J3 - SISTEM OPERASI LANJUT
  • TTI4T3 - MODEL DAN SIMULASI
  • TBI3H3 - MODEL DAN SIMULASI BIOLOGI
  • CII3P3 - PEMODELAN DAN SIMULASI
  • CPI3P3 - PEMODELAN DAN SIMULASI
  • TTI7B3 - PEMODELAN DAN SIMULASI JARINGAN LANJUT
  • TFI3I3 - PEMODELAN SIMULASI
  • CSI-2C3 - PEMODELAN, SIMULASI, DAN OPTIMASI
  • CSI2C3 - PEMODELAN, SIMULASI, DAN OPTIMASI
  • IEI3D2 - PRAKTIKUM TEKNIK INDUSTRI 3: PENGEMBANGAN PRODUK DAN SIMULASI INDUSTRI
  • ILI3A2 - SIMULASI DISKRIT SISTEM LOGISTIK , DAN PRAKTIKUM
  • IEI3E2 - SIMULASI KOMPUTER
  • VKI3A3 - SIMULASI PROYEK
  • ILI3I3 - SIMULASI SISTEM LOGISTIK BERBASIS AGEN DAN DINAMIKA SISTEM , DAN PRAKTIKUM
  • CII3D4 - PEMROGRAMAN BERBASIS OBJEK
  • TTI3G2 - PEMROGRAMAN BERBASIS OBJEK (JAVA)
  • VII3B4 - PEMROGRAMAN BERBASIS SENSOR
  • VII1F4 - PEMROGRAMAN BERBASIS WEB 1
  • VII2B4 - PEMROGRAMAN BERBASIS WEB 2
  • ISI2A3 - PEMROGRAMAN BERORIENTASI OBJEK
  • CII3B4 - PEMROGRAMAN BERORIENTASI OBJEK
  • VEI2D3 - PEMROGRAMAN BERORIENTASI OBJEK
  • CPI3B4 - PEMROGRAMAN BERORIENTASI OBJEK
  • CII-3B4 - PEMROGRAMAN BERORIENTASI OBJEK
  • CII3B4 - PEMROGRAMAN BERORIENTASI OBJEK
  • TKI2D3 - PEMROGRAMAN BERORIENTASI OBYEK
  • CII3B4 - PEMROGRAMAN BERORIENTASI OBYEK
  • VII2C4 - PEMROGRAMAN BERORIENTASI OBYEK
  • TTI4T3 - Model dan Simulasi
  • TTI3G2 - PEMROGRAMAN BERBASIS OBJEK (JAVA)
  • ISI2A3 - Pemrograman Berorientasi Objek**
  • ISI3E3 - Dasar Sistem Operasi**

Download / Flippingbook

 

Ulasan

Belum ada ulasan yang diberikan
anda harus sign-in untuk memberikan ulasan ke katalog ini