Deep Reinforcement Learning for Wireless Networks

F. Richard, YuYing He

Informasi Dasar

36 kali
21.21.936
621.382
Buku - Elektronik (E-Book)
Tel-U Gedung Manterawu Lantai 5 : Rak 12b
Tel-U Gedung Manterawu Lantai 5 : Rak 13a
Tel-U Purwokerto : Rak 6

This Springerbrief presents a deep reinforcement learning approach to wireless systems to improve system performance. Particularly, deep reinforcement learning approach is used in cache-enabled opportunistic interference alignment wireless networks and mobile social networks. Simulation results with different network parameters are presented to show the effectiveness of the proposed scheme.

There is a phenomenal burst of research activities in artificial intelligence, deep reinforcement learning and wireless systems. Deep reinforcement learning has been successfully used to solve many practical problems. For example, Google DeepMind adopts this method on several artificial intelligent projects with big data (e.g., AlphaGo), and gets quite good results..

Graduate students in electrical and computer engineering, as well as computer science will find this brief useful as a study guide. Researchers, engineers, computer scientists, programmers, and policy makers will also find this brief to be a useful tool.

Subjek

WIRELESS COMMUNICATION
 

Katalog

Deep Reinforcement Learning for Wireless Networks
978-3-030-10546-4
71p.: pdf file.; 3 MB
Inggris

Sirkulasi

Rp. 0
Rp. 0
Tidak

Pengarang

F. Richard, YuYing He
Perorangan
 
 

Penerbit

Springer International Publishing
Cham
2019

Koleksi

Kompetensi

  • CTI4K3 - JARINGAN NIRKABEL
  • TTI6G3 - KOMUNIKASI NIRKABEL LANJUT
  • TTI6Q3 - SISTEM CERDAS UNTUK KOMUNIKASI NIRKABEL
  • TTI6O3 - TOPIK LANJUT DALAM KOMUNIKASI NIRKABEL CERDAS

Download / Flippingbook

 

Ulasan

Belum ada ulasan yang diberikan
anda harus sign-in untuk memberikan ulasan ke katalog ini