Mathematics for Machine Learning

Marc Peter Deisenroth

Informasi Dasar

187 kali
21.21.189
006.31
Buku - Elektronik (E-Book)
Tel-U Gedung Manterawu Lantai 5 : Rak 4
Tel-U Purwokerto : Rak 3

The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site.

Subjek

Machine Learning
 

Katalog

Mathematics for Machine Learning
978-1-108-45514-5
392p.: pdf file.; 13 MB
English

Sirkulasi

Rp. 0
Rp. 0
Tidak

Pengarang

Marc Peter Deisenroth
Perorangan
 
 

Penerbit

Cambridge University Press
New York
2020

Koleksi

Kompetensi

  • MSH1B3 - LOGIKA MATEMATIKA A
  • CSH3L3 - PEMBELAJARAN MESIN
  • CII3C3 - PEMBELAJARAN MESIN
  • CPI3C3 - PEMBELAJARAN MESIN

Download / Flippingbook

 

Ulasan

Belum ada ulasan yang diberikan
anda harus sign-in untuk memberikan ulasan ke katalog ini