Transportasi kereta api dapat dibagi menjadi transportasi penumpang dan transportasi kargo. Oleh karena itu, proses perencanaan dan operasional terkait dengan kapasitas penumpang adalah bidang yang lebih menarik untuk dikaji lebih dalam dari masalah prediksi penambahan gerbong. Support Vector Regression (SVR) merupakan pengembangan dari metode Support Vector Machine untuk kasus regresi. Metode ini mampu mengatasi overfitting, dalam pemilihan parameter SVR menggunakan algoritma Grid Search. Data yang digunakan pada Tugas Akhir ini menggunakan data jumlah penumpang kereta api Argo Parahyangan periode 2019 dan jenis kelas kereta api dibagi menjadi 2, yaitu kelas Ekonomi dan kelas Eksekutif. Rata-rata dari hasil pengujian SVR menggunakan kernel RBF menghasilkan nilai performansi MAE (Mean Abosolute Error) sebesar 0.1276, MSE (Mean Square Error) sebesar 0.1796 dan MAPE (Mean Absolute Percentage Error) sebesar 0,00376.
Kata kunci : Algoritma Grid Search, Kereta Api, Prediksi, Support Vector Regression.