Sentimen merupakan opini seseorang terhadap suatu topik, produk, atau layanan tertentu. Analisis sentimen digunakan untuk menganalisis opini terhadap suatu topik tertentu apakah cenderung positif atau negatif. Media sosial Twitter digunakan oleh masyarakat Indonesia untuk menuliskan opini mereka dalam bentuk cuitan (tweet). Penelitian ini menjelaskan klasifikasi sentimen pada data Twitter berbahasa Indonesia untuk membantu dalam memahami sentimen pengguna Indonesia terhadap suatu topik yang dibahas di Twitter. Penelitian ini menggunakan metode word2vec untuk mengekstraksi fitur dengan mengkonversi data menjadi nilai vektor. Word2Vec memiliki keunggulan dapat melihat hubungan semantik antar kata. Metode klasifikasi pada penelitian ini menggunakan support vector machine (SVM). Proses klasifikasi sentimen dilakukan dengan mengolah data latih berupa data cuitan yang sudah dikumpulkan yang kemudian menjadi model untuk proses pengujian pada data uji. Dari hasil pengujian, penerapan metode word2vec dan SVM menghasilkan tingkat presisi sebesar 64,4%, recall sebesar 58%, dan f-score sebesar 61,1%