Onemarvelsattheintricate designoflivingsystems,andwecannotbutwonderhow life originated on this planet. Whether ?rst biological structures emerged as the selfreproducing genetic templates (genetics-?rst origin of life) or the metabolic universality preceded the genome and eventually integrated it (metabolism-?rst origin of life) is still a matter of hot scienti?c debate. There is growing acceptance that the RNA world came ?rst – as RNA molecules can perform both the functions of information storage and catalysis. Regardless of which view eventually gains acceptance, emergence of catalytic phenomena is at the core of biology. The last century has seen an explosive growth in our understanding of biological systems. The progression has involved successive emphasis on taxonomy ! physiology ! biochemistry ! molecular biology ! genetic engineering and ?nally the large-scale study of genomes. The ?eld of molecular biology became largely synonymous with the study of DNA – the genetic material. Molecular biology however had its beginnings in the understanding of biomolecular structure and function. Appreciationofproteins,catalyticphenomena,andthefunctionofenzymeshadalargeroleto play in the progress of modern biology.