Word2Vec Model Analysis for Semantic Similarities in English Words

DERRY JATNIKA

Informasi Dasar

97 kali
19.04.3360
005.13
Karya Ilmiah - Skripsi (S1) - Reference

This paper examines the calculation of the similarity between words in English using word representation techniques. Word2Vecis a model used in this paper to represent words into vector form. The model in this study was formed using the 320,000 articles in the English Wikipedia as the corpus and then Cosine Similarity calculation method is used to determine the similarity value. This model then tested by the test set gold standard WordSim-353 as many as 353 pairs of words and SimLex-999 as many as 999 pairs of words, which have been labelled with similarity values according to human judgment. Pearson Correlation was used to find out the accuracy of the correlation. The results of the correlation from this study are 0.665 for WordSim-353 and 0.284 for SimLex-999using the Windows size 9 and 300 vector dimension configurations.

Subjek

INFORMATICS
 

Katalog

Word2Vec Model Analysis for Semantic Similarities in English Words
 
 
Indonesia

Sirkulasi

Rp. 0
Rp. 0
Tidak

Pengarang

DERRY JATNIKA
Perorangan
Moch Arif Bijaksana, Arie Ardiyanti Suryani
 

Penerbit

Universitas Telkom, S1 Informatika
Bandung
2019

Koleksi

Kompetensi

  • CCH3F3 - KECERDASAN BUATAN
  • MUH1G3 - MATRIKS DAN RUANG VEKTOR
  • CSH4O3 - PEMROSESAN BAHASA ALAMI
  • CSH4G3 - PENAMBANGAN DATA
  • CSH4H3 - PENAMBANGAN TEKS
  • CCH4D4 - TUGAS AKHIR
  • CII4G3 - PEMROSESAN BAHASA ALAMI
  • CII4I3 - PENAMBANGAN DATA
  • CII4E4 - TUGAS AKHIR
  • CII2D3 - MATRIKS DAN RUANG VEKTOR
  • CPI2D3 - MATRIKS DAN RUANG VEKTOR
  • ILI2B3 - MATRIKS DAN RUANG VEKTOR

Download / Flippingbook

 

Ulasan

Belum ada ulasan yang diberikan
anda harus sign-in untuk memberikan ulasan ke katalog ini