Sistem Rekomendasi dapat merekomendasikan buku pada user tertentu berdasarkan prediksi rating, isi konten buku, ataupun metode lainnya. Banyak metode recommendation system yang digunakan seperti Probabilistic Matrix Factorization, dimana konten yang sudah diberi rating akan sering direkomendasikan. Namun pada Probabilistic Matrix Factorization memiliki kekurangan yaitu dalam mengatasi data yang memiliki nilai rating yang jarang. Maka diperlukan suatu metode yang digunakan untuk memahami konteks isi dari buku sehingga tidak hanya melihat dari rating saja namun dilihat juga dari review suatu buku. Untuk mempelajari review maka diigunakan suatu metode yaitu Convolutional Neural Network dengan cara memberikan suatu nilai vektor yang mengarah terhadap konteks buku kepada Probabilistic Matrix Factorization suatu recommender system. Berdasarkan hasil pengujiannya, metode tersebut dapat meningkatkan keakuratan data dengan MAE = 3,0114707. Sedangkan untuk Probabilistic Matrix Factorization nilai MAE = 4,0185377. Dari nilai tersebut dapat dijelaskan bahwa metode Convolutional Neural Network dan Probabilistic Matrix Factorization bekerja cukup baik untuk data yang jarang memiliki rating.