ABSTRAK
Iris recognition untuk mendeteksi dan mengenali sesuatu yang lebih baik dalam sistem biometrik. Oleh karena itu, banyak peneliti telah berusaha untuk meningkatkan algoritma untuk pengenalan diri menggunakan iris. Namun, masalah terbesar yang terjadi dalam melakukan penelitian adalah untuk melakukan irisokalisasi dengan baik. Selain itu, kelopak mata dan bulu mata juga merupakan masalah lain dalam pengenalan iris karena mereka dapat menutupi iris atau mata, dan mungkin ada beberapa gangguan yang mempengaruhi citra iris dengan baik.
Dalam Tugas Akhir ini telah dilakukan pengujian dengan sistem iris recognition yang mampu mengidentifikasi dengan mengunakan iris mata sistem berkarja dengan menggunakan Algoritma K-Nearest Neighbor (KNN) sebagai klasifikasi dan DWT sebagai ektrasi ciri. Setelah dilakukan pengujian dengan jumlah data 30 gambar iris di peroleh tingkat akurasi 54% dengan beberapa parameter diantaranya parameter level DWT dan parameter jarak pada KNN serta noise yang di ujikan.
Dari hasil pengujian didapatkan tingkat akurasi tersebut masih handal untuk noise pad nilai variansi 0,1, localvar noise pada nilai 0,1, salt and paper noise pada nilai 0,1, dan poison noise nilai langsung kemungkinan error.
Kata kunci: Algoritma K-NN, Iris identification, DWT