Salah satu karya seni dalam kebudayaan Bojonegoro yaitu batik Bojonegoro. Batik Bojonegoro memiliki jenis motif batik yang berbeda-beda maka untuk membedakan batik Bojonegoro tersebut dilakukan perancangan sistem untuk mengklasifikasi jenis batik ke dalam kelas-kelas jenis motif batik. Perancangan sistem dilakukan dalam mendeteksi batik menggunakan metode Gray Level Co-Occurrence (GLCM) sebagai ekstraksi ciri untuk proses pengambilan ciri atau inti citra dan Naive Bayes sebagai klasifikasi untuk pengelompokkan citra berdasarkan jenis batik Bojonegoro.
Proses kinerja kedua sistem tersebut image processing agar citra dapat diubah menjadi data berupa angka dengan bentuk keluaran hasil transformasi dalam pengolahan citra digital. Maka penulis melakukan penggabungan kedua sistem agar dapat mengetahui hasil akurasi yang signifikan dengan tujuan untuk mempermudahkan pengenalan jenis batik Bojonegoro dan mengembangkan sistem dalam mendeteksi citra batik berdasarkan jenis motif batik Bojonegoro menggunakan pengolahan citra digital.
Berdasarkan pengujian yang telah dilakukan, sehingga pada Tugas Akhir ini perancangan sistem dapat mendeteksi batik Bojonegoro berdasarkan jenis kelas motif batik yaitu enam kelas jenis motif batik, dengan komposisi jenis batik meliwis mukti, jenis batik pari sumilak, jenis batik rancak thengul, jenis batik sato gondo wangi dan jenis batik sekar jati. Pengujian dilakukan 60 citra batik dimana masing-masing kelas memiliki enam citra batik. Sehingga didapatkan dari beberapa skenario pengujian parameter orde dua terbaik yaitu correlation, homogeneity dan entropy, arah derajat = 0° dan jarak pixel (d)=2 dengan pengujian level kuantisasi maka akurasi terbaik sebesar 85% dengan waktu komputasi 206.6715 detik.
Kata Kunci: Batik Bojonegoro, GLCM, Naive Bayes.