Spatial Clustering Based on Dissimilarity Region Using CLARANS with Polygon Dissimilarity Function

ICHWANUL MUSLIM KARO KARO

Informasi Dasar

71 kali
17.05.187
C
Karya Ilmiah - Thesis (S2) - Reference

Most of unsupervised learning algorithms use a dissimilarity function to measures similarity between the objects within the dataset. However, traditionally dissimilarity functions did not design and fail to treat all spatial attributes of region or just solve partial kinds of region since incomplete representation of structural of region and other spatial information contained within the region datasets. In this research, we modified polygonal dissimilarity function (PDF) that comprehensively integrates both the spatial and the non-spatial attributes of a polygon to specifically consider the density and distribution that exist within the region datasets and work well to regular region, but not for irregular region. We represent a polygon as a set of intrinsic spatial attributes by slice vertices and structural region, extrinsic spatial attributes, and non-spatial attributes. Modified PDF was applied on cluster validity method by Davies Bouldin (DB) and spatial clustering by using CLARANS. Spatial clustering by CLARANS with modified PDF using two characteristically different sets of data, (a) regular geometric shapes (dummy region) and (b) irregular geometric shapes, Jakarta crime as case study on spatial clustering. Modified PDF is working and does not has member of disjoint cluster for more unstructured regions compared to origin PDF, has two percents smallest SSE than PDF, and accurately 36 percent than PDF on spatial clustering. Completely spatial information has above fifty percents significances and best cluster result for all dataset. In addition, modified PDF with DB (DBP ) can evaluated result of spatial region clustering than Silhouette index.

Subjek

DATA ANALYSIS-RESEARCH
 

Katalog

Spatial Clustering Based on Dissimilarity Region Using CLARANS with Polygon Dissimilarity Function
 
 
Inggris

Sirkulasi

Rp. 0
Rp. 0
Tidak

Pengarang

ICHWANUL MUSLIM KARO KARO
Perorangan
ARIEF FATCHUL HUDA, KIKI MAULANA ADHINUGRAHA
 

Penerbit

Universitas Telkom
Bandung
2017

Koleksi

Kompetensi

  • CSG523 - ANALISIS ALGORITMA
  • CSG5G3 - DATA MINING LANJUT
  • MTH503 - METODOLOGI PENELITIAN
  • CSG503 - PEMODELAN DAN OPTIMASI
  • MTG602 - PENGELOLAAN BISNIS TEKNOLOGI INFORMASI DAN KOMUNIKASI
  • CSG5E3 - PERSIAPAN DAN PENAMBANGAN DATA
  • CSG543 - PRATESIS I
  • CSG603 - PRATESIS II
  • CSG512 - PROYEK
  • CSG553 - SISTEM CERDAS LANJUT
  • CSG533 - TEORI INFORMASI
  • CSG613 - TESIS
  • CSG6Q3 - TOPIK KHUSUS DALAM NUMERICAL MACHINE LEARNING
  • CSG6S3 - TOPIK KHUSUS DALAM PENAMBANGAN TEKS DAN WEB
  • CII632 - PROYEK
  • TTI7Z4 - TESIS

Download / Flippingbook

 

Ulasan

Belum ada ulasan yang diberikan
anda harus sign-in untuk memberikan ulasan ke katalog ini