Di Indonesia, masih banyak penduduk yang mengalami kecacatan fisik seperti kelumpuhan yang menyebabkan mereka tidak dapat bergerak dengan sendirinya. Contoh pada tahun 2009 menurut Badan Kemntrian Sosial RI jumlah penyandang cacat pada sembilan provinsi sebanyak 299.203 jiwa dan 10,5% (31.327 jiwa) merupakan penyandang cacat berat yang mengalami hambatan dalam kegiatan sehari-hari.
Kursi roda otomatis merupakan alat yang difungsikan untuk meringankan beban penderita kelumpuhan tangan dan kaki yang tidak dapat menggerakan kursi roda manual pada umumnya. Prinsip kerja dari alat ini adalah dengan memanfaatkan gelombang suara pada manusia sebagai masukan informasi pada alat untuk dapat menentukan arah gerak dari kursi roda otomatis tersebut. Gelombang suara manusia yang masuk ke Raspberry Pi di ekstraksi menggunakan metode MFCC. Hasil ekstraksi tersebut dibandingkan dengan data ekstraksi yang telah ada sebelumnya pada database dengan menggunakan metode KNN. Metode KNN sendiri berkerja dengan cara menghitung jarak terdekat suatu sinyal baru dengan sinyal yang sudah teridentifikasi sebelumnya, jumlah sinyal yang dibandingkan tergantung dengan nilai K yang dimasukkan, adapun untuk menghitung jarak antar sinyal, KNN menggunakan metode Euclidean distance. Hasil dari pembandingan ektraksi dengan menggunakan metode KNN, didapat beberapa sinyal yang ada pada database mempunyai kemiripan dengan sinyal masukkan yang baru. Sehingga setelah dibandingkan didapat hasil berupa keputusan perintah yang sesuai dengan database untuk menggerakkan motor dari kursi roda.
Penelitian pada tugas akhir ini telah berhasil membuat sistem yang dapat mengenali ucapan dengan waktu pengambilan keputusan adalah 5.59 detik pada saat kondisi sepi dan jarak mikrofon terhadap pusat suara adalah 10 cm, namun nilai yang didapatkan tersebut hanya pada saat pengujian tanpa kursi roda, sedangkan untuk pengujian dengan kursi roda waktu pengenalan ucapannya menjadi 14.9 detik.
Kata kunci : Robot kursi roda, MFCC, KNN, Euclidean distance