ANALISIS SENTIMEN MENGGUNAKAN METODE LEARNING VECTOR QUANTIZATION

M. INDRA HALIM ARSYA DWI AKBARI

Informasi Dasar

130 kali
17.04.1143
006.312
Karya Ilmiah - Skripsi (S1) - Reference

Media sosial sebagai media komunikasi untuk menghubungkan semua orang menjadi mudah diterima oleh masyarakat seiring dengan perkembangan teknologi informasi. Data dari media sosial yang berisi opini dari masyarakat tersebut dapat diolah menjadi sebuah informasi yang lebih penting nilainya, salah satunya dengan menggunakan analisis sentimen.Dalam perkembangannya analisis sentimen digunakan dalam banyak kepentingan misal perusahaan, lembaga survei, dan pemerintah. Di dalam penelitian Tuagas Akhir ini, dilakukan analisis sentimen menggunakan algoritma Learning Vector Quantization (LVQ). Langkah pertama yang dilakukan adalah pengambilan data Tweet dari Twitter menggunakan Twitter API. Setelah itu melakukan preprocessing untuk mengolah data dan mengekstraksi fitur yang terkandung di dalamnya. Setelah itu list fitur diubah menjadi bentuk vector dengan menggunakan pembobotan TF-IDF. Performansi akurasi dari metode didapatkan dengan menguji learning rate, epoch dan jumlah data yang digunakan. Dari hasil pengujian performansi algoritma Learning Vector Quantization (LVQ) diketahui bahwa semakin tinggi learning rate maka akurasi yang didapatkan semakin kecil, kemudian semakin tinggi jumlah epoch maka akurasi semakin besar. Akurasi rata-rata yang berhasil dicapai pada penelitian ini adalah sebesar 73.15%, 66.42%, dan 69.58% untuk setiap data. Kata kunci :Learning Vector Quantization, LVQ, Analisis Sentimen, Machine Learning

Subjek

DATA ANALYSIS
 

Katalog

ANALISIS SENTIMEN MENGGUNAKAN METODE LEARNING VECTOR QUANTIZATION
 
 
 

Sirkulasi

Rp. 0
Rp. 0
Tidak

Pengarang

M. INDRA HALIM ARSYA DWI AKBARI
Perorangan
 
 

Penerbit

Universitas Telkom
Bandung
2017

Koleksi

Kompetensi

  • BUG1D2 - BAHASA INGGRIS I
  • BUG1E2 - BAHASA INGGRIS II
  • CEG2A3 - PEMROGRAMAN BERORIENTASI OBJEK
  • CEG2C3 - DASAR PERANCANGAN PERANGKAT LUNAK
  • CEG3C3 - DESAIN BASIS DATA
  • CEG3G3 - KECERDASAN BUATAN
  • CEG4H3 - PENGKODEAN DAN KOMPRESI DATA
  • CEH4A3 - PENGKODEAN DAN KOMPRESI DATA

Download / Flippingbook

 

Ulasan

Belum ada ulasan yang diberikan
anda harus sign-in untuk memberikan ulasan ke katalog ini