Banyak permasalahan di dunia ini yang dimodelkan dengan matematika dalam proses penyelesaiannya, salah satunya memodelkan dalam bentuk matriks, Banyak penelitian menggunakan matriks jarang yang dihitung menjadi Sparse Matrix-Vector Multiplication (SpMV) dalam benchmarking perangkat keras mereka, dengan tujuan mendapatkan waktu optimal dalam mengeksekusi matriks tersebut, sehingga semakin cepat waktu eksekusinya, akan semakin baik kinerja dari perangkat keras mereka. Untuk mempermudah pemetaan matriks dibutuhkan format penyimpanan yang baik pula, format penyimpanan ini akan berfungsi penuh saat pemetaan matriks dan mempermudah pembacaan suatu matriks yang sudah di konversi dari matriks koordinat,penelitian ini akan menggunakan dua format penyimpanan yaitu CSR dan BCSR. , kinerja kedua format ini di evaluasi dan di jalankan pada personal computer dengan dua mekanisme yaitu secara serial dan parallel, pada mekanisme parallel akan dijalankan dengan protokol komunikasi MPI. Hasil pengujian menggunakan beberapa matriks dengan tipe data yang berbeda-beda dan dengan ukuran baris kolom yang beragam, masing-masing matriks di eksekusi dengan lima iterasi agar mendapatkan hasil yang optimal, masing-masing format penyimpanan menghasilkan hasil yang beragam, disebabkan oleh ukuran matriks dan sebaran data pada matriks koordinat, pada format CSR peningkatan kecepatan sebanyak 229 kali terdapat pada thread 3 menuju thread 4, pada dan pada format BCSR, peningkatan kecepatan 300 kali lebih cepat pada thread 4, namun penurunan kecepatan pada thread 3 untuk setiap matriks, dalam hal ini dapat disimpulkan setiap metode memiliki keunggulan dan kelemahan tersendiri dalam mengeksekusi SpMV. Yaitu pengaruh pada ukuran matriks dan sebaran data pada matriks tersebut.