Analisis dan Implementasi Prediksi Rating pada Memory-based Collaborative Filtering dengan Menggunakan Smoothing

HAFIZ DEWANTO

Informasi Dasar

98 kali
15.04.1817
004
Karya Ilmiah - Skripsi (S1) - Reference

Teknik Collaborative Filtering (CF) telah dikenal sebagai salah satu teknik yang paling sukses didalam Recommender System, dimana teknik ini memanfaatkan informasi dan preferensi dari user atau item lain untuk memberikan rekomendasi item. Ada dua tipe algoritma CF, yaitu memory-based dan model-based yang memiliki kelebihan dan kekurangan masing-masing. Pada penelitian ini, digunakan algoritma memory-based CF dengan teknik smoothing, dimana teknik smoothing mampu membantu kelemahan memory-based CF dalam hal kekurangan data rating yang kosong atau disebut sparsity. Berdasarkan hasil pengujian, algoritma memory-based CF dengan teknik smoothing mampu menurunkan error sistem yang diukur dengan Mean Absolute Error (MAE) dari 0,8581 menjadi 0,8483 atau menurun sebesar 1,14% dibandingkan dengan menggunakan algoritma memory-based saja. Kata kunci :Collaborative Filtering, Recommender System, Memory-based CF, sparsity, MAE

Subjek

DATA PROCESSING
 

Katalog

Analisis dan Implementasi Prediksi Rating pada Memory-based Collaborative Filtering dengan Menggunakan Smoothing
 
 
Indonesia

Sirkulasi

Rp. 0
Rp. 0
Tidak

Pengarang

HAFIZ DEWANTO
Perorangan
Agung Toto Wibowo
 

Penerbit

Universitas Telkom
Bandung
2015

Koleksi

Kompetensi

 

Download / Flippingbook

 

Ulasan

Belum ada ulasan yang diberikan
anda harus sign-in untuk memberikan ulasan ke katalog ini