Sistem pengenalan biometrik merupakan sistem pengenalan pola yang menggunakan karakteristik fisiologis atau karakteristik perilaku untuk mengenali identitas seseorang. Wajah merupakan salah satu karakteristik fisiologis yang paling berpotensi digunakan dalam sistem pengenalan biometrik.
Tugas akhir ini bertujuan dan fokus dalam pengimplementasian pengolahan citra digital dengan merancang suatu sistem yang mampu untuk mengenal (recognition) wajah seseorang. Sistem ini dirancang dengan bahasa Python menggunakan software IDLE(python GUI). Selain itu sistem ini juga mengimplementasikan pengolahan citra digital yang digunakan untuk pengenalan plat nomor menggunakan algoritma openALPR. Sistem pengenalan wajah menggunakan algoritma LBP (Local Binary Patern) pada citra latih dan uji. Sistem ini menggunakan klasifikasi euclidean distance untuk mencocokan ciri dari citra uji terhadap citra latih.
Dari simulasi sistem yang sudah dilakukan, didapatkan akurasi tertinggi dari sistem yaitu 93,33%. Kondisi tersebut didapat dengan menggunakan nilai treshold sebesar 1,5, artinya apabila euclidean distance dari ciri citra uji dengan data ciri citra latih diatas 1,5 maka sistem tidak mengenali citra uji tersebut. Berdasarkan hasil pengujian, jarak terbaik antara kamera dengan objek adalah 1 meter, kamera dapat diletakkan dengan sudut 450,900,1350, dan dengan nilai crop terbaik 92 x 112. Rata-rata waktu komputasi dari sistem ini adalah 2,098571429 detik, dengan rata-rata CPU Usage 30,08571% yang menandakan bahwa sistem ini tidak menghabiskan resource memory.
Kata Kunci : LBP, Raspberry Pi, openALPR, face recognition, parking system