ABSTRAK
Kayu merupakan bahan yang memiliki keragaman tinggi, sehingga kayu perlu dipilah untuk menentukan kekuatan, kualitas dan kelayakannya. Dalam industri pengolahan kayu di Indonesia sangat perlu adanya proses pemilahan kayu mentah yang nantinya akan diproses dalam tahap selanjutnya. Namun hingga sekarang proses pemilahan kayu mentah dilakukan dengan manual, dan dilakukan dengan menggunakan tenaga manusia, sehingga akan membutuhkan waktu yang cukup lama dan tidak efisien
Tugas akhir ini dibuat dengan tujuan untuk mensimulasikan suatu sistem yang mampu menganalisis ada tidaknya cacat pada kayu yang digunakan dalam proses pemilahan di industri pengolahan kayu. Dengan menggunakan metode Local Binary Pattern (LBP) untuk tahap awal ekstraksi cirinya dimana LBP digunakan untuk mencari pola pada citra. LBP didefinisikan sebagai perbandingan nilai biner piksel pada pusat citra dengan nilai piksel disekelilingnya. Setelah itu, menyusun nilai biner kedalam nilai desimal untuk menggantikan nilai piksel pada pusat citra. Hasil dari LBP ini akan diproses pada ekstraksi ciri statistik, sehingga menghasilkan vektor ciri yang dijadikan masukan pada klasifikasi citra dengan menggunakan metode K-Nearest Neighbor (KNN).
Hasil dari simulasi yang dilakukan sistem dapat mendeteksi adanya cacat pada kayu dengan tingkat akurasi tertinggi adalah 89,4%, FAR sebesar 7,6% dan FRR sebesar 3%, dengan waktu komputasi rata-rata sistem sebesar 0,3069 detik.
Kata kunci : Cacat Kayu, Local Binary Pattern (LBP), Ekstraksi Ciri Statistik, K-Nearest Neighbor (KNN), FAR, FRR.