Audio Deepfake Detection Using Xception Model - Dalam bentuk pengganti sidang - Artikel Jurnal

DZAMIR AKMAL

Informasi Dasar

120 kali
25.04.482
000
Karya Ilmiah - Skripsi (S1) - Reference

The proliferation of audio deepfakes, generated using advanced technologies such as WaveNet and Generative Adversarial Networks (GANs), poses significant threats to digital security, including identity theft, misinformation, and fraud. To address these challenges, this study proposes an end-to end framework for audio deepfake detection that leverages Mel Spectrograms as input features and the Xception model as the backbone architecture. The methodology includes optimized preprocessing techniques, such as normalization and resizing, and robust data augmentation strategies to enhance feature quality and model generalization. The framework was evaluated using the Automatic Speaker Verification (ASV) spoof 2021 dataset, achieving a high test accuracy of 95.86% with balanced precision, recall, and F1-scores for ‘real‘ and ‘fake‘ classifications. Comparative analysis demonstrated that the Xception model outperformed ResNet50 and MobileNetV2 in both accuracy and generalization. While the results highlight the robust

Subjek

CYBER SECURITY
 

Katalog

Audio Deepfake Detection Using Xception Model - Dalam bentuk pengganti sidang - Artikel Jurnal
 
iv, 13p.: il,; pdf file
English

Sirkulasi

Rp. 0
Rp. 0
Tidak

Pengarang

DZAMIR AKMAL
Perorangan
Vera Suryani
 

Penerbit

Universitas Telkom, S1 Informatika
Bandung
2025

Koleksi

Kompetensi

  • CII3E3 - KEAMANAN SIBER
  • CS3243 - KECERDASAN MESIN DAN ARTIFISIAL
  • CCH4D4 - TUGAS AKHIR

Download / Flippingbook

 

Ulasan

Belum ada ulasan yang diberikan
anda harus sign-in untuk memberikan ulasan ke katalog ini