Leveraging VGG-16 and Optuna for Carbon Stock Estimation with Drone Imagery in Indonesia - Dalam bentuk buku karya ilmiah

CAECARRYO BAGUS DEWANATA

Informasi Dasar

70 kali
25.04.469
000
Karya Ilmiah - Skripsi (S1) - Reference

Accurate estimation of carbon stocks is vital for management. While field-based methods often face limitations in coverage, remote sensing approaches present a more effective alternative. Recent advancements in deep learning have enabled the application of Convolutional Neural Networks (CNNs) to analyze high-resolution drone imagery in carbon stock estimation. This study assesses the performance of VGG-16 and ResNet-20 for regression tasks, employing Optuna for hyperparameter optimization to enhance prediction accuracy. The experimental findings reveal that VGG-16 achieved an R² score of 0.645, with lower RMSE and MAE values than ResNet- 20. Furthermore, the study highlights significant challenges, such as dataset imbalance and feature extraction in regions with high carbon stocks. Future research may investigate hybrid learning techniques, ensemble models, and multispectral data fusion to improve model estimation accuracy and generalization.

Subjek

Image processing - computer vision
 

Katalog

Leveraging VGG-16 and Optuna for Carbon Stock Estimation with Drone Imagery in Indonesia - Dalam bentuk buku karya ilmiah
 
iv, 9p.: il,; pdf file
English

Sirkulasi

Rp. 0
Rp. 0
Tidak

Pengarang

CAECARRYO BAGUS DEWANATA
Perorangan
Erwin Budi Setiawan, Gamma Kosala
 

Penerbit

Universitas Telkom, S1 Informatika
Bandung
2025

Koleksi

Kompetensi

  • CCH4D4 - TUGAS AKHIR

Download / Flippingbook

 

Ulasan

Belum ada ulasan yang diberikan
anda harus sign-in untuk memberikan ulasan ke katalog ini