Ontology-Based Low Glycemic Index Menu Recommender System for Patients With Diabetes - Dalam bentuk pengganti sidang - Artikel Jurnal

ATHALIA MALIKA NAJAH

Informasi Dasar

112 kali
25.04.418
000
Karya Ilmiah - Skripsi (S1) - Reference

Diabetes is a growing chronic health issue driven by lifestyle changes, urbanization, and poor dietary habits. Managing diabetes requires not only medical intervention but also significant lifestyle adjustments, particularly through a healthy and balanced diet. However, existing menu recom-mender systems often fail to consider the importance of a low glycemic index (GI) in meal planning, and they typically lack detailed information such as ingredients, recipes, and nutritional facts. This study seeks to address these short- comings by developing an ontology-based menu recommender system using the Ontology Web Language (OWL) to improve dietary adherence and reduce complications associated with diabetes through personalized low glycemic index menu recommendations. By modeling food data with OWL, the system organizes information about food items, glycemic index values, and nutritional properties to generate personalized recommendations. Evaluation metrics showed a precision of 0.767, recall of 1.0, accur

Subjek

RECOMMENDER SYSTEMS
 

Katalog

Ontology-Based Low Glycemic Index Menu Recommender System for Patients With Diabetes - Dalam bentuk pengganti sidang - Artikel Jurnal
 
iv, 11p.: il,; pdf file
 

Sirkulasi

Rp. 0
Rp. 0
Tidak

Pengarang

ATHALIA MALIKA NAJAH
Perorangan
Z. K. Abdurahman Baizal
 

Penerbit

Universitas Telkom, S1 Informatika
Bandung
2025

Koleksi

Kompetensi

  • CII4H3 - SISTEM PEMBERI REKOMENDASI
  • CII4E4 - TUGAS AKHIR

Download / Flippingbook

 

Ulasan

Belum ada ulasan yang diberikan
anda harus sign-in untuk memberikan ulasan ke katalog ini