Klasifikasi Kerusakan Kendaraan Secara Real-Time Berdasarkan Deteksi Kecelakaan Dari Rekaman CCTV Menggunakan Pendekatan Dua Tahap - Dalam bentuk pengganti sidang - Artikel Jurnal

ICHWAN RIZKY WAHYUDIN

Informasi Dasar

122 kali
25.04.411
000
Karya Ilmiah - Skripsi (S1) - Reference

Traffic accidents are a significant global issue, causing injuries, property damage, and traffic congestion, which often delay emergency responses. These challenges highlight the need for more efficient and effective real-time traffic management systems that can improve safety, reduce response times, and improve overall traffic flow. This study proposes a two-stage approach using CCTV footage to enable automatic accident detection and vehicle damage classification. In the first stage, the YOLOv8 model is used for real-time accident detection, achieving a mean Average Precision (mAP) of 0.84, indicating its high accuracy in identifying accidents. The second stage incorporates the EfficientNetB0 model to classify vehicle damage into three categories: normal, moderate, and severe, with an overall accuracy of 0.76, while MobileNetV2 achieves an accuracy of 0.7. By integrating these models, the system demonstrates significant potential for accident detection and vehicle damage classification, thereby contr

Subjek

Computer vision
 

Katalog

Klasifikasi Kerusakan Kendaraan Secara Real-Time Berdasarkan Deteksi Kecelakaan Dari Rekaman CCTV Menggunakan Pendekatan Dua Tahap - Dalam bentuk pengganti sidang - Artikel Jurnal
 
8p.: il,; pdf file
 

Sirkulasi

Rp. 0
Rp. 0
Tidak

Pengarang

ICHWAN RIZKY WAHYUDIN
Perorangan
Ema Rachmawati
 

Penerbit

Universitas Telkom, S1 Informatika
Bandung
2025

Koleksi

Kompetensi

 

Download / Flippingbook

 

Ulasan

Belum ada ulasan yang diberikan
anda harus sign-in untuk memberikan ulasan ke katalog ini