Fall Detection System Design With Compressive Sensing Architecture and Accelerometer Sensor - Dalam bentuk buku karya ilmiah

MUHAMAD WILDAN TRISIANLY

Informasi Dasar

110 kali
24.04.5534
004.21
Karya Ilmiah - Skripsi (S1) - Reference

Penelitian ini berfokus pada peningkatan kebutuhan sistem deteksi jatuh yang lebih efektif, terutama untuk populasi lansia yang mengalami risiko tinggi terhadap cedera serius akibat kejadian jatuh. Penelitian ini dipicu oleh keterbatasan sistem deteksi jatuh konvensional yang sering kali gagal mengidentifikasi jatuh. Oleh karena itu, dibutuhkan sebuah solusi yang dapat meningkatkan akurasi deteksi serta meminimalkan kesalahan deteksi. Sistem ini diharapkan dapat memberikan solusi yang lebih handal dan efisien untuk deteksi kejadian jatuh, terutama dalam konteks populasi lansia. Solusi yang diusulkan dalam penelitian ini adalah perancangan sistem fall detection dengan memanfaatkan empat subsistem yaitu network, kompresif sensing, machine learning dan aplikasi berbasis website. Pada network menggunakan tiga node yang masing-masing terdiri dari modul ESP32 dan sensor MPU6050 yang dikonfigurasi dengan topologi partial mesh dan berkomunikasi menggunakan protokol ESP-NOW. Metode ini memberikan komunikasi data yang baik dengan hasil latency 102 ms dan packet loss 1%. Penginderaan kompresif menggunakan metode kompresi FFT dan Gaussian Random Projection yang berfungsi untuk mengurangi ukuran data sensor sebesar 50% tanpa kehilangan informasi penting. Selanjutnya data direkonstruksi metode Basis Pursuit (BP). Untuk mengembalikan data menjadi domain waktu dan semua data yang dihasilkan positif, dilakukan proses Inverse Fast Fourier Transform (IFFT) dan pengambilan nilai absolut. Algoritma machine learning Decision tree Classification dapat bekerja baik dalam klasterisasi data dengan tingkat akurasi 96%, dibandingkan dengan algoritma KNN sebesar 92% dan algoritma SVM sebesar 73%. Akurasi ini penting dalam mencapai hasil penelitian yang menunjukkan bahwa sistem internet of things dan machine learning berfungsi dengan baik. Selain itu ada hasil pengujian performansi aplikasi berbasis website dengan hasil yang baik yaitu cpu usage 1,7% dan RAM usage 150 mb. Dengan keseluruhan spesifikasi yang telah ditampilkan dan diuji, maka akan memberikan hasil alat pendeteksi jatuh yang baik. Kata kunci: Rancang Bangun, Sistem Fall Detection, Arsitektur Penginderaan Kompresif, Sensor Accelerometer.

Subjek

TUGAS AKHIR
 

Katalog

Fall Detection System Design With Compressive Sensing Architecture and Accelerometer Sensor - Dalam bentuk buku karya ilmiah
 
72p.: il,; pdf file
Indonesia

Sirkulasi

Rp. 0
Rp. 0
Tidak

Pengarang

MUHAMAD WILDAN TRISIANLY
Perorangan
Ida Wahidah Hamzah, Hasbi Ash Shiddieqy A
 

Penerbit

Universitas Telkom, S1 Teknik Telekomunikasi
Bandung
2024

Koleksi

Kompetensi

  • TUI4B4 - TUGAS AKHIR

Download / Flippingbook

 

Ulasan

Belum ada ulasan yang diberikan
anda harus sign-in untuk memberikan ulasan ke katalog ini