Penelitian ini menyajikan analisis mendalam tentang deteksi dan klasifikasi masker wajah menggunakan YOLOv8 dan akan diuji coba pada dataset Facemask yang didalamya terdiri dari
gambar - gambar yang dibagi dalam tahap pelatihan, pengujian, dan validasi dan melalui dua pendekatan, yaitu augmentasi dan non augmentasi. Penelitian ini menganalisis penilaian kinerja
YOLOv8 dan menyoroti kemampuannya mengenali individu yang memakai masker wajah dan yang tidak memakai masker wajah. Tujuan utama dari penelitian ini adalah untuk menganalisis performa
YOLOv8 dalam mendeteksi dan mengklasifikasikan penggunaan masker wajah. Hasil evaluasi berdasarkan tiga metrik utama yaitu Mean Average Precision (mAP), Precision, dan Recall. Hasil pada pendekatan non augmentasi model menunjukan Mean Average Precision (mAP) 93,1%, Precison 79,7% , dan Recall 95,9% . Hasil pada pendekatan augmentasi menunjukan menunjukan Mean Average Precision (mAP) 91,9%, Precison 76,6% , dan Recall 94,7%.