DEEP LEARNING-BASED DEMAPPER FOR MULTIUSER DETECTION OF NON-ORTHOGONAL MULTIPLE ACCESS SCHEME - Dalam bentuk buku karya ilmiah

ALIFIA SAFRIDA ARINI

Informasi Dasar

97 kali
24.05.409
006.31
Karya Ilmiah - Thesis (S2) - Reference

This thesis proposes a deep learning-based demapper that utilizes feedforward neural networks to learn the complex mapping functions required for multiuser detection in non-orthogonal multiple access (NOMA) system. By utilizing neural networks, the proposed deep learning-based demapper eliminates the need for the system to check each constellation point individually, hence decreasing the computational complexity of the demapping process, while maintaining a good bit-error rate (BER) performances.

This thesis developed a deep learning-based demapper, trained using a dataset generated with iterative spatial demapping (ISM), to process the received signals from a two-user NOMA scheme. This thesis analyzes two NOMA scenarios: (i) an uncoded scheme that utilizes binary phase-shift keying (BPSK) modulation, and (ii) a coded scheme that employs repetition coding and interleaver to improve transmission reliability. The proposed demapper trained on essential features such as the superposition received sig

Subjek

Communication engineering-telecommunication systems
 

Katalog

DEEP LEARNING-BASED DEMAPPER FOR MULTIUSER DETECTION OF NON-ORTHOGONAL MULTIPLE ACCESS SCHEME - Dalam bentuk buku karya ilmiah
 
xiv, 60p.: il,; pdf file
English

Sirkulasi

Rp. 0
Rp. 0
Tidak

Pengarang

ALIFIA SAFRIDA ARINI
Perorangan
Khoirul Anwar, Gelar Budiman
 

Penerbit

Universitas Telkom, S2 Teknik Elektro
Bandung
2024

Koleksi

Kompetensi

 

Download / Flippingbook

 

Ulasan

Belum ada ulasan yang diberikan
anda harus sign-in untuk memberikan ulasan ke katalog ini