Tentang eBook ini
Buku ini merupakan versi bahasa Indonesia dari buku kami yang berjudul “Project-Based Approach On DEEP LEARNING Using Scikit-Learn, Keras, and Tensorflow with Python GUI” yang dapat dilihat di Amazon maupun Google Books.
Dalam buku ini, Anda akan mempelajari cara menerapkan TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy, dan library lainnya untuk mengimplementasikan klasifikasi citra.
Pada Bab 1, Anda akan menggunakan TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy danb sejumlah pustaka lain untuk klasifikasi cuaca menggunakan dataset Multi-class Weather Dataset yang disediakan oleh Kaggle (https://www.kaggle.com/pratik2901/multiclass-weather-dataset/download).
Pada Bab 2, Anda akan menerapkan TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy dan sejumlah pustaka lain untuk mengenali jenis bunga menggunakan dataset Flowers Recognition dataset yang disediakan oleh Kaggle (https://www.kaggle.com/alxmamaev/flowers-recognition/download). Anda juga akan membangun sebuah GUI untuk tujuan ini.
Pada Bab 3, Anda akan menggunakan TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy dan sejumlah pustaka lain untuk mendeteksi plat nomor kendaraan menggunakan dataset Car License Plate Detection yang disediakan oleh Kaggle (https://www.kaggle.com/andrewmvd/car-plate-detection/download). Anda juga akan membangun sebuah GUI untuk tujuan ini.
Pada Bab 4, Anda akan belajar bagaimana menggunakan TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy dan sejumlah pustaka lain untuk melakukan pengenalan bahasa isyarat menggunakan Sign Language Digits Dataset yang disediakan oleh Kaggle (https://www.kaggle.com/ardamavi/sign-language-digits-dataset/download). Anda juga akan membangun sebuah GUI untuk tujuan ini.
Pada Bab 5, Anda akan belajar bagaimana menerapkan pustaka TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy dan sejumlah pustaka lain untuk mendeteksi keretakan permukaan beton menggunakan dataset Surface Crack Detection yang disediakan oleh Kaggle (https://www.kaggle.com/arunrk7/surface-crack-detection/download). Anda juga akan membangun sebuah GUI untuk tujuan ini.