Berita merupakan informasi yang dialirkan dari berbagai sumber mengenai kejadian factual yang dapat mempengaruhi lingkungan sekitar. Klasifikasi label topik biasanya dilakukan dalam pengelompokan artikel berita berdasarkan topiknya. Variabel ciri artikel merupakan penentu dalam klasifikasi label. Namun apabila suatu ciri yang menjadi ciri dari satu label artikel merupakan ciri dari label artikel lainnya maka artikel tersebut memiliki lebih dari satu topik atau disebut topik multi-label. Penelitian ini melakukan pembangunan pemodelan suatu klasifikasi teks berita dengan menggunakan metode multinomial naïve bayes untuk melakukan klasifikasi multi-label dengan metode hamming loss sebagai pengukuran performa model klasifikasi tersebut. Hasil hamming loss yang dihasilkan dari penelitian ini sebesar 0,18. Berdasarkan hasil penelitian, metode multinomial naïve bayes ini mampu untuk menyelesaikan permasalahan klasifikasi teks pada kasus multi-label.