Alat pendeteksi api tradisional yang sudah terpasang di kebanyakan gedung saat ini biasanya berbasis sensor, seperti sensor inframerah, sensor asap, dan lain-lain. Akan tetapi deteksi berbasis sensor tersebut penempatannya harus pas dan tidak cocok jika digunakan di luar ruangan atau di tempat terbuka. Dengan adanya kamera CCTV, sangat membantu dalam mendeteksi api secara efisien dalam waktu yang singkat jika kamera tersebut dilengkapi dengan perangkat lunak khusus.
Pada tugas akhir ini dirancang dan diimplementasikan sistem pendeteksi api berbasis visual. Tahapan pada sistem ini diantaranya adalah Three-frame differencing untuk mendeteksi gerakan pada video, fire color image segmentation, ekstraksi ciri menggunakan Grey-level Co-occurrence Matrix (GLCM) dan Local Binary Patterns-Three Orthogonal Planes (LBP-TOP), dan pengklasifikasian menggunakan k-Nearest Neighbors (kNN). Keluaran dari tugas akhir ini adalah sistem dapat mendeteksi dan menunjukkan lokasi objek api pada gambar video.