Informasi Umum

Kode

24.04.4118

Klasifikasi

000 - General Works

Jenis

Karya Ilmiah - Skripsi (S1) - Reference

Subjek

Data Science

Dilihat

524 kali

Informasi Lainnya

Abstraksi

Product reviews on e-commerce platforms are critical in guiding users&#39; purchasing decisions, but the<br /> prevalence of fake reviews poses a significant risk to consumers. This research focuses on detecting fake<br /> reviews on the Shopee platform in Indonesia using a Graph Convolutional Network (GCN) approach. Real<br /> and fake review data is transformed into a graph, with TF-IDF and PMI techniques used to form edges that<br /> represent relationships between sentences. GCN is then applied to analyze these relationships, identifying<br /> words and sentences labeled as &ldquo;Fake&rdquo;. In addition, this study also examines strong relationships between<br /> words or sentences in fake reviews to uncover deeper patterns and relationships, which provide valuable<br /> insights into the characteristics of fake reviews. The GCN model achieved an F1 score of 0.8919, obtained<br /> through 100 epochs, with 16 hidden layers, and using a total of 206 reviews as data, demonstrating its<br /> effectiveness in detecting fake reviews.

Koleksi & Sirkulasi

Tersedia 1 dari total 1 Koleksi

Anda harus log in untuk mengakses flippingbook

Pengarang

Nama ANGGI RODESA SASABELLA
Jenis Perorangan
Penyunting Imelda Atastina
Penerjemah

Penerbit

Nama Universitas Telkom, S1 Informatika (International Class)
Kota Bandung
Tahun 2024

Sirkulasi

Harga sewa IDR 0,00
Denda harian IDR 0,00
Jenis Non-Sirkulasi