Informasi Umum

Kode

20.04.230

Klasifikasi

300.285 - Data Analysis of Social Science

Jenis

Karya Ilmiah - Skripsi (S1) - Reference

Subjek

Data Analysis

Dilihat

540 kali

Informasi Lainnya

Abstraksi

Metode Recurrect Neural Network (RNN) merupakan jaringan saraf buatan dengan pemrosesan yang dipanggil berulang kali. Dalam penelitian kali ini metode RNN akan digunakan untuk mengolah data kuesioner kepuasan mahasiswa Universitas Telkom berupa isisan bebas. Keuntungan menggunakan metode pengolahan data seperti ini bertujuan untuk mempercepat hasil yang didapat dengan akurasi yang besar dalam waktu yang singkat. Arsitektur RNN yang digunakan unutk pengolahan data ini adalah LSTM (Long Short Term Memory). penggunaan LSTM dapat mempermudah pengolahan data berbentuk teks, karena memiliki memory untuk setiap kata pada dokumen. Dalam tugas akhir ini akan menganalisis akurasi yang didapatkan dengan menggunakan metode LSTM. Hasil uji yang didapatkan pada penelitain ini cukup baik melihat akurasi tertinggi pada class positive unutk ratio (50:50) sebesar 56.73%, class neutral unutk ratio (70:30) sebesar 82,49%, dan class negative untuk ratio (80:20) sebesar 79,84%. Kata kunci: RNN, LSTM

  • CIG4A3 - PEMBELAJARAN MESIN
  • IFG412 - TUGAS AKHIR I (SEMINAR PROPOSAL)

Koleksi & Sirkulasi

Seluruh (1) koleksi tidak tersedia

Anda harus log in untuk mengakses flippingbook

Pengarang

Nama IZZA LUTHFI RAIS
Jenis Perorangan
Penyunting JONDRI
Penerjemah

Penerbit

Nama Universitas Telkom, S1 Informatika
Kota Bandung
Tahun 2020

Sirkulasi

Harga sewa IDR 0,00
Denda harian IDR 0,00
Jenis Non-Sirkulasi