Informasi Umum

Kode

19.04.1534

Klasifikasi

C -

Jenis

Karya Ilmiah - Skripsi (S1) - Reference

Subjek

Academic Status

Dilihat

383 kali

Informasi Lainnya

Abstraksi

The huge resources need effectiveness and efficiency, it can be processed by machine learning. There have been many studies conducted using machine learning method and produced quite good performance in sentiment analysis. Some machine learning methods that are often used in general are Naive bayes (NB), K-nearest neighbor (KNN), Support vector machine (SVM), and Random forest methods. Mostly, KNN did not achieve better performance than other machine learning methods in sentiment analysis. In this study, the Polarity v2.0 from Cornell movie review dataset will be used to test KNN with Information gain features selection in order to achieve good performance. The purpose of this research are to nd the optimum K for KNN and compare KNN with other methods. KNN with the help of Information gain feature selection becomes the best performance method with 96.8% accuracy compared to the NB, SVM, and Random forest while the optimum K is 3.

  • CSH3L3 - PEMBELAJARAN MESIN
  • CSH4O3 - PEMROSESAN BAHASA ALAMI
  • CSH4H3 - PENAMBANGAN TEKS
  • CII3C3 - PEMBELAJARAN MESIN
  • CII4G3 - PEMROSESAN BAHASA ALAMI
  • CPI3C3 - PEMBELAJARAN MESIN

Koleksi & Sirkulasi

Seluruh (1) koleksi tidak tersedia

Anda harus log in untuk mengakses flippingbook

Pengarang

Nama NOVELTY OCTAVIANI FAOMASI DAELI
Jenis Perorangan
Penyunting ADIWIJAYA
Penerjemah

Penerbit

Nama Universitas Telkom
Kota Bandung
Tahun 2019

Sirkulasi

Harga sewa IDR 0,00
Denda harian IDR 0,00
Jenis Non-Sirkulasi