DENTAL PATIENT CHIEF COMPLAINT CLASSIFICATION - Dalam bentuk buku karya ilmiah

ARYO HANDONO

Informasi Dasar

130 kali
23.05.358
006.35
Karya Ilmiah - Thesis (S2) - Reference

A patient who has dental health problems usually needs assistance on determining the most suitable dental specialist, due to their unfamiliarity with the dental field. Patients need to express the symptoms usually in a natural language text before being recommended to visit a dental specialist. This study proposes a system to classify the dental patient complaints based on the most suitable dental specialist. The problem is tackled as a text classification involving the following methods: CNN, Bi-LSTM, and Multinomial Naïve Bayes. The dataset used contains 2199 items and the experimental results show that the model with the best performance is the combination of GloVe and CNN outperforms Bi-LSTM with Attention layer and Multinomial NB with score accuracy, precision, recall, and F1 score respectively 66% for each of them.

Subjek

NATURAL LANGUAGE PROCESSING
 

Katalog

DENTAL PATIENT CHIEF COMPLAINT CLASSIFICATION - Dalam bentuk buku karya ilmiah
 
 
English

Sirkulasi

Rp. 0
Rp. 0
Tidak

Pengarang

ARYO HANDONO
Perorangan
Ade Romadhony
 

Penerbit

Universitas Telkom, S2 Informatika
Bandung
2023

Koleksi

Kompetensi

 

Download / Flippingbook

 

Ulasan

Belum ada ulasan yang diberikan
anda harus sign-in untuk memberikan ulasan ke katalog ini