A Significant Wave Height and Peak Wave Period Prediction with Transformer and LSTM Approach in Cilacap, Indonesia - Dalam bentuk pengganti sidang - Artikel Jurnal

KEVIN DANIEL HAMONANGAN OMPUSUNGGU

Informasi Dasar

256 kali
23.04.6455
004
Karya Ilmiah - Skripsi (S1) - Reference

Wave phenomena in the ocean can fluctuate like other weather parameters, making forecasting challenging. Wave forecasting is needed to support daily marine activities such as marine transportation scheduling and daily operation offshore or in the harbor. Significant wave height (SWH) and peak wave period (Tp) predictions are essential to wave forecasting. In this research, we perform a time series wave forecasting for SWH and Tp using a relatively recent deep learning model, i.e., Transformer. As a case study, we choose a location in the southern part of Java island, Indonesia, i.e., on the Cilacap coast. We also compare the Transformer results with the well-known LSTM model, which shows that the Transformer model performs better in terms of correlation coefficient and root mean squared error than the LSTM model for Hs. At the same time, LSTM came as a better model for Tp than the Transformer.

Subjek

DATA SCIENCE
 

Katalog

A Significant Wave Height and Peak Wave Period Prediction with Transformer and LSTM Approach in Cilacap, Indonesia - Dalam bentuk pengganti sidang - Artikel Jurnal
 
 
Indonesia

Sirkulasi

Rp. 0
Rp. 0
Tidak

Pengarang

KEVIN DANIEL HAMONANGAN OMPUSUNGGU
Perorangan
Didit Adytia
 

Penerbit

Universitas Telkom, S1 Informatika
Bandung
2023

Koleksi

Kompetensi

  • CII3C3 - PEMBELAJARAN MESIN
  • CII3L3 - PEMBELAJARAN MESIN LANJUT
  • CII2M3 - PENGANTAR KECERDASAN BUATAN

Download / Flippingbook

 

Ulasan

Belum ada ulasan yang diberikan
anda harus sign-in untuk memberikan ulasan ke katalog ini