CONVOLUTIONAL NEURAL NETWORK PADA KLASIFIKASI SIDIK JARI BERBASIS HENRY CLASSIFICATION SYSTEM

NOVELITA DWI MIRANDA

Informasi Dasar

200 kali
20.04.3653
006.31
Karya Ilmiah - Skripsi (S1) - Reference

Pengenalan sidik jari merupakan bagian dari teknologi biometrik yang masih digunakan sampai saat ini untuk mengidentifikasi karakteristik unik pada diri manusia. Dalam penyimpanan data sidik jari sistem perumusan Henry digunakan untuk keperluan kepolisian hingga saat ini. Namun, perumusan sidik jari di Indonesia masih dilakukan oleh tenaga ahli secara manual yang tidak efisien waktu dan tingkat akurasinya tidak dapat dipertanggungjawabkan karena kondisi tenaga ahli setiap harinya tidak sama. Hal ini memicu adanya sistem perumusan sidik jari otomatis. Pada Tugas Akhir ini dirancang sebuah sistem perumusan sidik jari otomatis menggunakan metode Convolutional Neural Network (CNN) dengan arsitektur ResNet-18 dan ResNet-50 berbasis Henry classification system. Dataset yang digunakan diperoleh dari website National Institute of Standards and Technology (NIST) berupa 2100 citra sidik jari grayscale 8-bit. Untuk mengoptimalkan akurasi sistem dilakukan preprocessing pada citra masukan berupa canny edge detection, Contrast Limited Adaptive Histogram Equalization (CLAHE), sobel edge detection, dan gabor filter. Kemudian masuk ke tahap training akan menggunakan tiga algoritma optimasi yaitu Stochastic Gradient Descent (SGD), Root Mean Square Propagation (RMSProp), dan Adaptive moment (Adam). Proses klasifikasi dataset akan dipetakan menjadi lima kelas yaitu arch (A), tented arch (T), left loop (L), right loop (R), dan whorl (W). Terakhir membuat rumus primary sidik jari berdasarkan Henry classification system. Skenario pengujian penelitian ini yaitu pengujian preprocessing, fungsi optimasi, pengaruh jumlah epoch, dan perbandingan performa. Parameter performansi yang akan dianalisis berdasarkan tingkat akurasi dan loss function. Hasil akhir menunjukkan model terbaik untuk klasifikasi pola sidik jari yaitu ResNet-18 dengan optimasi SGD menggunakan citra gabor filter yang memiliki nilai akurasi 95,05%.

Kata Kunci: CNN, Henry classification system, resnet, sidik jari.

Subjek

Machine Learning
 

Katalog

CONVOLUTIONAL NEURAL NETWORK PADA KLASIFIKASI SIDIK JARI BERBASIS HENRY CLASSIFICATION SYSTEM
 
 
Indonesia

Sirkulasi

Rp. 0
Rp. 0
Tidak

Pengarang

NOVELITA DWI MIRANDA
Perorangan
Ledya Novamizanti, Syamsul Rizal
 

Penerbit

Universitas Telkom
Bandung
2020

Koleksi

Kompetensi

 

Download / Flippingbook

 

Ulasan

Belum ada ulasan yang diberikan
anda harus sign-in untuk memberikan ulasan ke katalog ini