
Abstract

A prototype of a pyramidal electromagnetic absorber with size of base $3,5 \mathrm{~cm}$ $x 3,5 \mathrm{~cm}$ and height $10,9 \mathrm{~cm}$ has been constructed from 2 unit mass of ferromagnetic sand, 7 styrofoam and 12 gasoline in order to get a material with $\varepsilon_{\mathrm{r}}=2-\mathrm{j} 1$ and $\mu_{\mathrm{r}}=1$ (John D. Kraus: Antennas for All Applications).

A torroidal coiled of that material as core and a parallel plate condenser of that material as substrat (dielectric), were used for μ_{r} and ε_{r} measurement with a Network Analyzer. The result are $\varepsilon_{\mathrm{r}}=2,09-\mathrm{j} 1,34$ and $\mu_{\mathrm{r}}=0,868$ both with in 1500 MHz to 2500 MHz .

By placing the prototype in the middle line of sight between two horns antennas of two RWG slotted line in 9400 MHz band measuring system, has been found $24,5 \mathrm{~dB}$ attenuation in one direction (position) and $25,9 \mathrm{~dB}$ in the reverse position.

