ABSTRACT

The growth of human's needs of communication is increase rapidly moreover

for wireless technology. To handle this user's needs, wireless technology is also

developed in quality and quantity. One of the steps of wireless technology

development is by developing its modulation technique. Multicarrier Code Division

Modulation Access (MC-CDMA) is a modulation technique that mix strong point

between Orthogonal Frequency Division Multiplexing (OFDM) and Code Division

Multiple Access (CDMA). By that mixing, MC-CDMA becomes better to reduce

Multiple Access Interference (MAI) and Inter Symbol Interference (ISI) and to

maintain the performance of bit error rate. So MC-CDMA emerges as a multiple

access technique that is good for high data rate communication.

In this final project, MC-CDMA system is designed and implemented based

on FPGA (Field Programmable Gate Array) using FFT 64 points built by two stage of

processing with radix 8. It will be gotten a system prototype which can be applied for

making MC-CDMA chip. This FPGA uses high level language called by VHDL

(Very High Speed Description Language). System designed and implemented on

FPGA is standardized to WLAN 802.11b.

From this research on base band MC-CDMA, the performance of each block

can be showed from the simulation on Modelsim. Simulation result shows the same

input and output from transmitter block and receiver block. From the synthesis result,

the used of FPGA resource can be showed from the synthesis on Xilinx. This

baseband MC-CDMA design 24% of occupied slices and 1% for used of IOB. It also

can work on maximum frequency of 105,972 MHz.

Key word: MC-CDMA, FPGA, VHDL

ii