DAFTAR PUSTAKA

- [1] V. Aryai, H. Baji, and M. Mahmoodian, "Failure assessment of corrosion affected pipeline networks with limited failure data availability," Process Safety and Environmental Protection, vol. 157, pp. 306–319, 2022. [Online]. Available: https://doi.org/10.1016/j.psep. 2021.11.024
- [2] M. A. Adegboye, W. K. Fung, and A. Karnik, "Recent advances in pipeline monitoring and oil leakage detection technologies: Principles and approaches," Sensors, 2019.
- [3] S. S. Aljameel et al., "An anomaly detection model for oil and gas pipelines using machine learning," Computation, vol. 10, no. 8, 2022.
- [4] A. B. Nassif, M. A. Talib, Q. Nasir, and F. M. Dakalbab, "Machine learning for anomaly detection: A systematic review," IEEE Access, 2021.
- [5] L. Wang, J. Li, U. A. Bhatti, and Y. Liu, "Anomaly detection in wireless sensor networks based on knn," in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Springer, 2019, pp. 632–643.
- [6] M. Hosseinzadeh, A. M. Rahmani, B. Vo, M. Bidaki, M. Masdari, and M. Zangakani, "Improving security using sym-based anomaly detection: issues and challenges," Soft Computing, vol. 25, no. 4, pp. 3195–3223, 2021.
- [7] N. Aslam et al., "Anomaly detection using explainable random forest for the prediction of undesirable events in oil wells," Applied Computational Intelligence and Soft Computing, vol. 2022, 2022.
- [8] Z. Wang, Y. Zhou, and G. Li, "Anomaly detection by using streaming k- means and batch k-means," in 2020 5th IEEE International Conference on Big Data Analytics (ICBDA). IEEE, 2020, pp. 11– 17.
- [9] S. Cr'epey, N. Lehdili, N. Madhar, and M. Thomas, "Anomaly detection in financial time series by principal component analysis and neural networks," Algorithms, vol. 15, no. 10, 2022.
- [10] S. I. Senarathna et al., "A data-driven approach based on artificial neu- ral networks for the detection and classification of bearing anomalies in power generation plants," in 2023 IEEE World AI IoT Congress (AIIoT), 2023, pp. 415–420.
- [11] A. F. Ihsan and W. Astuti, "Deep learning based anomaly detection on natural gas pipeline operational data," in 2022 2nd International Conference on Intelligent Cybernetics Technology and Applications (ICICyTA). IEEE, 2022, pp. 228–233.
- [12] S. Gopali, F. Abri, S. Siami-Namini, and A. S. Namin, "A comparative study of detecting anomalies in time series data using 1stm and ten models," arXiv preprint, 2021, available online: http://arxiv.org/abs/2112.09293.
- [13] H. Torabi, S. L. Mirtaheri, and S. Greco, "Practical autoencoder based anomaly detection by using vector reconstruction error," Cybersecurity, vol. 6, no. 1, 2023.
- [14] J. Bi, X. Zhang, H. Yuan, J. Zhang, and M. C. Zhou, "A hybrid prediction method for realistic network traffic with temporal convolutional network and lstm," IEEE Transactions on Automation Science and Engineering, vol. 19, no. 3, pp. 1869–1879, 2022.
- [15] J. Fan, K. Zhang, Y. Huang, Y. Zhu, and B. Chen, "Parallel spatio- temporal attention-based tcn for multivariate time series prediction," Neural Computing and Applications, 2023.

- [16] Y. Yu, X. Si, C. Hu, and J. Zhang, "A review of recurrent neural networks: Lstm cells and network architectures," Neural Computation, 2019.
- [17] H. D. Nguyen, K. P. Tran, S. Thomassey, and M. Hamad, "Forecasting and anomaly detection approaches using 1stm and 1stm autoencoder techniques with the applications in supply chain management," Inter-national Journal of Information Management, vol. 57, 2021.