
I. INTRODUCTION 

 

 

Every work sector, especially those in industries that rely on technical operations and 

infrastructure systems, is not im- mune to risk and potential damage. The oil and gas industry is a sector 

highly vulnerable to various types of operational disruptions, particularly in gas distribution through 

pipelines. The industry relies on pipelines to transport gas and oil on a large scale, essentially the 

lifeblood of the energy distribution system. However, with pipelines being widespread in length and 

operating in various extreme environmental conditions, the risk of damage is also higher [1], [2]. Even 

small, unde- tected damages can become significant problems threatening operational safety and the 

environment. One such conse- quence is leaks in pipelines, which lead to environmental pollution, 

increased carbon emissions, and harm to the health of the surrounding population [3]. If these pipeline 

leaks are left untreated, these impacts will occur, and accidents will result in considerable losses to the 

oil and gas industry.  

Until now, the conventional method used to detect pipeline damage still relies on human manual 

monitoring. This approach usually involves operators monitoring pipelines through visual observation 

of operational data, using their experience and subjective judgment. However, this method tends to be 

inefficient and vulnerable to human error. Even with the increasing complexity of pipeline operations, 

this method can no longer accurately detect minor issues such as anomalies. To address this limitation, 

a solution that is gaining widespread application is the use of machine learning (ML) technology in 

anomaly detection, a form of artificial intelligence (AI) [4]. This anomaly detection technology en- 

ables real-time monitoring of pipelines, identifying abnormal patterns that might otherwise go 

undetected so that potential damage or leaks can be mitigated early.  

Various machine learning models can be used to detect anomalies, which, of course, have 

advantages. One of these models is the traditional model, which is based on supervised learning using 

labeled data, such as K-Nearest Neighbors (KNN) [5], Support Vector Machine (SVM) [6], and Ran- 

dom Forest [7]. On the other hand, traditional unsuper- vised learning-based models such as K-Means 

Clustering and Principal Component Analysis (PCA) are often used to automatically detect anomalies 

without labeled data [8], [9]. However, traditional models for anomaly detection often rely on manually 

defined rules and thresholds, which can be time- consuming and difficult to optimize [10].  

Deep learning-based approaches are increasingly being used as the need for more adaptive 

anomaly detection sys- tems grows. One study demonstrated that autoencoders could detect anomalies 

in unlabeled natural gas pipeline operational data, utilizing the Euclidean distance between the original 

and reconstructed data as the anomaly score and determining a threshold based on the statistical 

distribution of the score [11]. Meanwhile, another approach compared two popular deep learning 

architectures, namely Long Short-Term Memory (LSTM) and Temporal Convolutional Network 

(TCN), in de- tecting anomalies in multivariate time series data. The results show that TCN has 

advantages in terms of training stability and time efficiency over LSTM and produces slightly higher 

F1 scores in detecting anomalies [12]. The findings of both studies confirm the importance of selecting 

the exemplary model architecture in the development of anomaly detection systems, especially on 

unlabeled time series data such as oil and gas operational data. 

Therefore, this research focuses on finding the best model by combining three deep learning 

approaches, namely TCN, LSTM, and Autoencoder, into two main variants: TCN- Autoencoder (TCN-

AE) and LSTM-Autoencoder (LSTM- AE). The two models are compared to identify the most optimal 

model for detecting anomalies in oil and gas opera- tional data. Given that the data used is unlabeled, 

performance evaluation is conducted using the Mean Squared Error (MSE) metric as an indicator of 

reconstruction. In addition to MSE- based quantitative analysis, anomaly detection results are analyzed 



qualitatively through human visual interpretation to ensure that detected anomalies represent significant 

devia- tions in an operational context and can be identified in an applicable way. This research provides 

additional insights for the data science community by benchmarking deep learning architectures under 

unlabeled time-series conditions. It of- fers practical guidance in selecting lightweight yet effective real-

time industrial anomaly detection models, especially in safety-critical domains where labeled data is 

scarce. 


