## **BABI**

# **PENDAHULUAN**

## 1.1. Latar Belakang Masalah

Jaringan nirkabel telah menjadi kebutuhan utama dalam kehidupan seharihari, baik di sektor rumah tangga, perkantoran, pendidikan, hingga industri. Salah satu teknologi nirkabel yang paling umum digunakan adalah WiFi (*Wireless Fidelity*). WiFi memiliki pengertian yaitu sekumpulan standar yang digunakan untuk Jaringan Lokal Nirkabel yang didasari pada spesifikasi IEEE 802.11. [1]. Teknologi ini memungkinkan perangkat untuk terhubung ke internet tanpa kabel fisik, memberikan fleksibilitas dan kenyamanan tinggi dalam mengakses informasi. Namun, penyebaran sinyal WiFi secara bebas di udara juga menimbulkan sejumlah tantangan, terutama dalam konteks keamanan informasi dan gangguan elektromagnetik antar perangkat [2].

Dalam situasi tersebut, diperlukan sebuah sistem yang mampu membatasi sinyal WiFi secara selektif pada area tertentu tanpa mengganggu sistem lain di sekitarnya. Salah satu pendekatan konvensional yang digunakan adalah pembangunan ruang kedap sinyal menggunakan bahan reflektif atau penyerap gelombang elektromagnetik. Namun, metode ini umumnya membutuhkan bahan yang berat, tebal, serta sulit diaplikasikan pada struktur bangunan yang sudah ada. Oleh karena itu, dibutuhkan teknologi baru yang lebih efisien, fleksibel, dan terjangkau, dalam hal ini teknologi metamaterial *absorber* menjadi alternatif yang sangat menjanjikan.

Metamaterial adalah material buatan yang memiliki sifat elektromagnetik unik yang tidak dijumpai pada material alami. Sifat-sifat tersebut dihasilkan dari struktur periodik unit sel. Dengan mendesain struktur unit sel secara khusus, metamaterial dapat memanipulasi gelombang elektromagnetik. Salah satu aplikasi paling potensial dari metamaterial adalah dalam bentuk *absorber*, yakni struktur yang mampu menyerap gelombang elektromagnetik pada frekuensi tertentu secara efisien, dengan tingkat refleksi minimal dan hampir tanpa transmisi.

Dalam konteks peredaman sinyal, metamaterial *absorber* sudah sering diteliti untuk menggantikan material konvensional dalam berbagai situasi. Contohnya pada penelitian yang dilakukan oleh Achmad Fauzi Insani membahas

terkait metamaterial *absorber* menggantikan material penyusun ruang *anechoic chamber*. Penelitian tersebut dilakukan pada rentang frekuensi S-Band 2 GHz sampai 4 GHz. Struktur metamaterial *absorber* yang dibuat terdiri dari tiga lapisan yaitu, substrat dielektrik, *patch*, dan lapisan konduktor sebagai *ground plane*. Lewat penelitian tersebut disimpulkan metamaterial *absorber* dapat menggantikan material penyusun ruang *anechoich chamber* secara efektif dan efisien [3].

Oleh karena itu, penelitian dan pengembangan metamaterial *absorber* menjadi sangat penting untuk menciptakan solusi isolasi gelombang yang efektif, ringan, dan aplikatif. Pada penelitian ini, metamaterial *absorber* diuji menggunakan frekuensi WiFi 2,4 GHz. Fokus penelitian ini diarahkan pada optimasi dimensi unit sel dan pencapaian nilai parameter S11 yang rendah pada frekuensi WiFi. Pengujian dilakukan menggunakan *Vektor Network Analyzer* dan *Spectrum Analyzer* untuk melihat nilai S11 dan level daya, sehingga dapat dijadikan referensi pembelajaran untuk pengujian awal metamaterial *absorber*.

## 1.2. Rumusan Masalah

- 1. Bagaimana cara membuat desain metamaterial *absorber* yang optimal untuk digunakan sebagai pengaman jaringan WiFi pada frekuensi 2,4 GHz?
- 2. Bagaimana hasil pengujian metamaterial *absorber* agar dapat menyerap gelombang WiFi pada frekuensi 2,4 GHz?

## 1.3. Tujuan dan Manfaat

- 1. Mengetahui spesifikasi desain *absorber* untuk metamaterial pengaman jaringan WiFi pada frekuensi 2,4 GHz.
- 2. Mendapatkan hasil pengujian metamaterial *absorber* agar bekerja dengan nilai *Absorption rate* > 80% pada saat menyerap gelombang WiFi 2,4 GHz.

#### 1.4. Batasan Masalah

- 1. Percobaan yang dilakukan hanya mengamati gelombang elektromagnetik pada frekuensi 2,4 GHz.
- 2. Sistem yang dibuat berfokus pada optimalisasi penyerapan gelombang WiFi.

- 3. Produk yang dihasilkan memiliki rentang dimensi  $25 \times 25$  cm sampai dengan  $35 \times 32$  cm.
- 4. Pengujian hanya dilakukan pada sampel metamaterial *absorber* untuk mengGambarkan ruangan kedap gelombang WiFi dengan mengamati Sparameter dan *absorption rate*.

## 1.5. Metode Penelitian

#### 1.5.1. Studi Literatur

Mencari sumber referensi terpercaya untuk mendapatkan informasi yang mumpuni. Memahami dasar-dasar teori dan pengetahuan untuk mendukung percobaan agar mendapatkan hasil yang terbaik. Termasuk mempelajari simulator yang akan digunakan.

#### 1.5.2. Desain

Membuat desain unit sel dan periodik sel untuk selanjutnya disimulasikan di *software* CST Studio. Memilih bahan yang tepat dan ukuran desain yang pas sangat memengaruhi hasil dari simulasi.

## 1.5.3. Simulasi

Simulasi dilakukan setelah desain selesai. Simulasi digunakan sebagai Gambaran awal sebelum fabrikasi. Untuk memperkirakan hasil akhir dan mendapatkan hasil yang paling optimal. Simulasi dilakukan di *software* CST Studio.

#### 1.5.4. Fabrikasi

Setelah dilakukan simulasi dan mendapatkan hasil yang terbaik, selanjutnya dicetak atau fabrikasi. Untuk mendapatkan hasil pengujian secara real dan menyimpulkan hasil percobaan.

## 1.5.5. Pengujian

Pengujian dilakukan untuk hasil fabrikasi memastikan hasil fabrikasi bekerja sesuai dengan hasil simulasi. Pengujian dilakukan dengan membandingkan pancaran antena tanpa penghalang *absorber* dan dengan penghalang *absorber*.

## 1.5.6. Analisa

Setelah semua selesai, dilakukan analisa terhadap hasil percobaan dan hasil simulasi untuk menentukan kesimpulan yang didapatkan pada penelitian kali ini.

# 1.6. Jadwal Pelaksanaan

Tabel 1. 1 Rencana Jadwal Pengerjaan

| No.  | Deskripsi                                                  | Durasi   | Tanggal             | Milestone                                                                                                                                                    |
|------|------------------------------------------------------------|----------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 110. | Tahapan                                                    | Durasi   | Selesai             | Milestone                                                                                                                                                    |
| 1    | Studi literatur                                            | 2 minggu | 30 September 2024   | Paham terkait apa<br>yang akan dibuat dan<br>permasalahan yang<br>ada                                                                                        |
| 2    | Diskusi pemilihan<br>judul dan tujuan<br>pembuatan skripsi | 1 minggu | 7 Oktober<br>2024   | Mendapatkan judul<br>yang sesuai dan<br>memiliki tujuan<br>untuk memecahkan<br>suatu permasalahan                                                            |
| 3    | Penulisan Bab 1<br>dan Bab 2                               | 3 minggu | 4 November<br>2024  | Penyusunan latar<br>belakang, rumusan<br>masalah, tujuan<br>manfaat, batasan, dan<br>metode penelitian<br>serta menuliskan<br>dasar teori yang<br>diperlukan |
| 4    | Mempelajari software desain sistem                         | 2 minggu | 18 November<br>2024 | Dapat menggunakan sofware CST Studio                                                                                                                         |
| 5    | Desain sistem                                              | 6 minggu | 6 Januari<br>2025   | Desain metamaterial absorber unit sel dan periodik sudah selesai dan siap cetak                                                                              |
| 6    | Penulisan Bab 3                                            | 2 minggu | 21 Januari<br>2025  | Menyusun<br>perancangan desian                                                                                                                               |
| 7    | Fabrikasi                                                  | 4 minggu | 25 April 2025       | Fabrikasi selesai                                                                                                                                            |
| 8    | Pengujian hasil<br>fabrikasi                               | 4 minggu | 19 Mei 2025         | Pengujian metamaterial absorber selesai dan mendapatkan data untuk analisis                                                                                  |
| 9    | Penulisan Bab 4<br>dan Bab 5                               | 2 minggu | 10 Juni 2025        | Buku skripsi selesai                                                                                                                                         |