DAFTAR PUSTAKA

- [1] R. Rahma, et al., "Ensemble of Vision Transformer Architectures for Efficient Alzheimer's Disease Classification," Brain Informatics, vol. 8, no. 1, 2021.
- [2] A. Nanni, et al., "Ensemble Model for Alzheimer's Disease Detection," Brain Informatics, vol. 9, no. 2, 2022.
- [3] S. Wang, et al., "Alzheimer's Disease Diagnosis Using Deep Learning with Novel Architecture Designs," IEEE Access, vol. 9, pp. 12345–12354, 2021
- [4] Y. Dosovitskiy, et al., "An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale," Proc. Int. Conf. on Learning Representations (ICLR), 2021.
- [5] H. Sun, et al., "Vision Transformer Approach for Classification of Alzheimer's Disease Using 18F-Florbetaben Brain Images," Applied Sciences, vol. 13, no. 6, pp. 3453, 2023.
- [6] S. Tonekaboni, et al., "Challenges and Opportunities in Machine Learning for Detecting Alzheimer's Disease Using Brain Imaging Data," NeuroImage: Clinical, vol. 27, pp. 102–110, 2020.
- [7] J. Hardy and D. J. Selkoe, "The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics," Science, vol. 297, no. 5580, pp. 353–356, 2002.
- [8] C. R. Jack Jr., et al., "Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade," The Lancet Neurology, vol. 9, no. 1, pp. 119–128, 2010.
- [9] D. S. Knopman, et al., "Alzheimer's disease," Nature Reviews Disease Primers, vol. 7, no. 1, pp. 1–21, 2021.

- [10] G. B. Frisoni, et al., "The clinical use of structural MRI in Alzheimer disease," Nature Reviews Neurology, vol. 6, pp. 67–77, 2010.
- [11] J. M. Schott, et al., "MRI in dementia: practical considerations and future directions," The Lancet Neurology, vol. 19, no. 10, pp. 914–926, 2020.
- [12] S. Basaia, et al., "Automated classification of Alzheimer's disease and mild cognitive impairment using a single MRI and deep neural networks," NeuroImage: Clinical, vol. 21, pp. 101645, 2019.
- [13] F. Li, et al., "A robust deep model for improved classification of Alzheimer's disease," Magnetic Resonance Imaging, vol. 66, pp. 258–267, 2020.
- [14] Alzheimer's Association, "2023 Alzheimer's disease facts and figures," Alzheimer's & Dementia, vol. 19, no. 4, pp. 1598–1695, 2023.
- [15] S. Sarraf and G. Tofighi, "DeepAD: Alzheimer's disease classification via deep convolutional neural networks using MRI and fMRI," bioRxiv, 070441, 2016.
- [16] H. I. Suk, S. W. Lee, and D. Shen, "Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis," NeuroImage, vol. 101, pp. 569–582, 2014.
- [17] J. Shi, X. Zheng, Y. Li, Q. Zhang, and S. Ying, "Multimodal neuroimaging feature learning with multimodal stacked deep polynomial networks for diagnosis of Alzheimer's disease," IEEE Transactions on Biomedical Engineering, vol. 65, no. 10, pp. 2211–2219, 2018.